English

Chip guided beam for new portable 3D printers

211
2024-06-18 15:54:21
See translation

Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a crucial step towards realizing the aforementioned ideas. The relevant paper was published in the latest issue of the journal Light: Science&Applications.

Yelena Natalas, senior author of the paper and professor of electrical engineering and computer science at MIT, stated that her team has previously developed an integrated optical phased array system, which uses a series of micro antennas placed on the chip to control the beam of light and move it in a specific direction. The research team aims to explore whether this device can be used to manufacture chip based 3D printers. At the same time, the research team at the University of Texas at Austin demonstrated for the first time a specialized resin that can be rapidly cured using visible light. The two teams hit it off and the first chip based 3D printer emerged.

The 3D printer prototype consists of a single photon chip containing a 160 nanometer thick optical antenna array, and the entire chip can be placed on a coin. The chip can emit reconfigurable beams of light into the synthetic resin trap. When the beam of light shines on it, the synthetic resin trap solidifies into a solid shape and can be fully formed within a few seconds.

The research team points out that this portable 3D printer is expected to be applied in multiple fields. For example, clinical doctors can customize medical equipment for patients, engineers can quickly create prototypes of parts on the job site, and so on.

Source: Science and Technology Daily

Related Recommendations
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    See translation
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    See translation
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    See translation
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    See translation
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    See translation