English

Korean POSTECH develops stretchable color adjustable photonic devices

700
2024-06-11 15:34:09
See translation

Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.
A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.

This work was carried out by the Department of Electrical Engineering at the university and described in the journal Nature, Light: Science and Applications.


Structural colors are generated through the interaction between light and microscopic nanostructures, and do not rely on traditional color mixing methods to produce bright hues. Traditional displays and image sensors combine three primary colors (red, green, and blue), while structured color technology utilizes the inherent wavelength of light to produce more vivid and diverse color displays.

POSTECH's announcement states that this innovative method is being recognized as a promising technology in the nanooptics and photonics industries.

"Free adjustment of solid colors"
Traditional color mixing techniques using dyes or luminescent materials are limited to passive and fixed color representations. In contrast, adjustable color technology dynamically controls the nanostructure corresponding to a specific wavelength of light, allowing for free adjustment of pure colors.

Previous research was mainly limited to unidirectional color adjustment, typically converting colors from red to blue. Reversing this transition from blue to longer wavelength red has always been a major challenge.

The current technology only allows for adjustments to shorter wavelengths, making it difficult to achieve diverse color representations in the ideal free wavelength direction. Therefore, a new type of optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

Professor Cui's team solved these challenges by combining chiral * 1 liquid crystal * 2 elastomers (CLCE) with dielectric elastomer actuators (DEA). CLCE is a flexible material that can change the color of the structure, while DEAs cause flexible deformation of the dielectric in response to electrical stimulation.

The team optimized the actuator structure to combine with CLCE, enabling it to expand and contract, and developed a stretchable device with strong adaptability. The device can freely adjust the wavelength position in the visible spectrum, from shorter to longer wavelengths, and vice versa.

In their experiment, researchers demonstrated that their CLCE based photonic devices can use electrical stimulation to control the structural colors over a wide range of visible light wavelengths (from blue at 450nm to red at 650nm). Compared to previous technologies, this represents significant progress, which were limited to unidirectional wavelength tuning.

This study not only lays the foundation for advanced photonic devices, but also highlights their potential in various industrial applications.
Professor Cui commented, "This technology can be applied to displays, optical sensors, optical camouflage, direct optical simulation encryption, biomimetic sensors and smart wearable devices, as well as many other applications involving broadband electromagnetic waves beyond the light, color, and visible light bands. Our goal is to expand its application scope through continuous research.".

This study was supported by the Samsung Research and Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Industrial Technology Planning and Evaluation Institute.

Source: Laser Net

Related Recommendations
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    See translation
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    See translation
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    See translation
  • The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

    Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280...

    2023-10-23
    See translation