English

New insights into the interaction between femtosecond laser and living tissue

725
2024-06-07 14:10:38
See translation

The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.

To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photoscience (MPL), as well as Max Planck Zentrum f ü r Physik und Medizin, collaborated to determine the conditions under which strong pulsed lasers can be used in the body without damaging the organism.

The international team based in Erlangen used vertebrate zebrafish to investigate the mechanism of deep tissue light damage triggered by femtosecond excitation pulses at the cellular level. The research results have been published in the Journal of Communication Physics.

The first author of this publication, Dr. Soyeon Jun from the MPL "Femtosecond Field Mirror" group led by Fattahi, explained, "We have demonstrated that when the central nervous system (CNS) of zebrafish is irradiated with 1030 nm femtosecond pulses, it suddenly occurs at the extreme peak intensity required for low-density plasma formation.".

As long as the peak intensity is below the low plasma density threshold, this allows for non-invasive increase in imaging residence time and photon flux during 1030 nm irradiation. This is crucial for nonlinear unlabeled microscopes.

"These findings have greatly promoted the advancement of deep tissue imaging technology and innovative microscopy techniques, such as femtosecond field microscopy, which is currently being developed in my group. This technology can capture high spatial resolution, unlabeled images with attosecond time resolution," Fattahi said.

"Our research findings not only highlight the value of collaboration in the fields of physics and biology, but also pave the way for in vivo applications to achieve precise manipulation of the central nervous system based on light," added Wehner, head of the Neuroregeneration Research Group.

Source: Laser Net

Related Recommendations
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    See translation
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    See translation
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    See translation
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    See translation
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    See translation