English

Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

428
2024-05-29 14:40:30
See translation

Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure.

 


The researchers stated that "material selection is the most important, and we were the first to choose exciton material CsPbCl3 for this application." CsPbCl3 is a perovskite material that researchers use to manufacture photonic topological insulators (PTIs).

Although classical physics helps us understand the world, technological progress can be attributed to quantum mechanics. The understanding of quantum mechanics, from light-emitting diodes (LEDs) to lasers, transistors, and even electron microscopes, has driven the leapfrog development of modern technology.

However, there are still many unknowns waiting to be explored in the quantum field. Global researchers are using cutting-edge equipment to study the behavior of atomic particles, in order to further enhance their understanding. Meanwhile, Wei Bao, assistant professor of Materials Science and Engineering at RPI, and his team have adopted a unique research path.

What is a photonic topological insulator?
PTI is a material that can guide photons in light to specially designed interfaces inside the material, while also preventing light from scattering through it. This characteristic enables multiple photons within the material to maintain coherence and exhibit the behavior of a single photon.

RPI researchers have utilized this characteristic of materials to transform insulators into a simulated material, creating a miniature laboratory for studying the quantum properties of photons.

In the process of equipment manufacturing, researchers adopted technologies similar to those used in microchip manufacturing. They stack different materials layer by layer, and each molecule is carefully arranged to construct a structure with specific properties.

Firstly, the research team utilized cesium, lead, and chlorine to manufacture ultra-thin perovskite plates. Next, they etched specific patterns on a polymer. Then, the crystal plate and polymer are sandwiched between thin sheets of different oxide materials, resulting in a micro device with a thickness of about 2 microns, a length of 100 microns, and a diameter smaller than that of ordinary human hair.

How does this device work?
When the research team used lasers on the device, a glowing triangular pattern appeared on the material interface. This mode originates from the topological characteristics of the laser and is determined by the device design.

The significant advantage of this device lies in its ability to operate at room temperature. CsPbCl3 has a stable exciton binding energy of up to 64 meV, far exceeding the thermal fluctuation of 25.8 meV at room temperature.

The research team stated in a statement, "In the past, researchers could only supercool substances in vacuum, which required large and expensive equipment. However, many laboratories do not have such conditions. Therefore, our equipment will allow more researchers to conduct basic physics research in the laboratory."

In addition, the device also helps to develop lasers that require lower energy for operation. The threshold of our strongly coupled topologically polarized laser at room temperature (15.2 μ J cm-2) is much lower than the threshold of the low-temperature III-V InGaAs weakly coupled system (~106 μ J cm-2), which is approximately 7 times lower.

Source: OFweek

Related Recommendations
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    See translation
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    See translation
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    See translation
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation