English

Advanced OPA enhances the energy of attosecond imaging ultra short pulses

398
2024-05-11 16:03:34
See translation

The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.

Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond pulses, it is necessary to develop stable, high-energy, and long wavelength single period laser sources.

Researchers at the RIKEN Advanced Photonics Center have developed a method for generating high-energy single cycle MIR pulses. This method is called Advanced Dual Chirp Optical Parametric Amplification (Advanced DC-OPA), which increases the energy of a single cycle laser pulse by 50 times and can be used to generate extremely short pulses with a peak power of 6 terawatts.

"At present, the output energy of attosecond lasers is extremely low," said researcher Eiji Takahashi. "If they are to be used as light sources for a wide range of fields, increasing their output energy is crucial."

Researchers used two types of nonlinear crystals to develop advanced DC-OPA - bismuth triborate oxide (BiB3O6) and lithium niobate doped with magnesium oxide (MgO: LiNbO3). The crystal magnifies the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, based only on a combination of two nonlinear crystals." "What surprised me was that such a simple concept provided a new amplification technology and brought breakthroughs in the development of high-energy, ultrafast lasers."

The damage threshold of nonlinear crystals limits the energy scalability of OPA under high pulse energy. Takahashi said, "The biggest bottleneck in the development of high-energy and ultrafast infrared laser sources is the lack of effective methods for directly amplifying single cycle laser pulses." "This bottleneck results in a millijoule barrier in the energy of single cycle laser pulses."

The advanced DC-OPA method overcomes the bottleneck of pulse energy scalability using single cycle IR/MIR laser systems.

The team expects that advanced DC-OPA methods will drive the development of attosecond laser technology forward. Takahashi said, "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to terawatt level peak power." "This is undoubtedly a significant leap in the development of high-power attosecond lasers."

Due to the excellent energy scalability of the advanced DC-OPA method, laser pulses with higher pulse energy and fewer pulse duration cycles can be achieved based on different crystal combinations and higher pump energy. The extension of pulse energy can promote high-throughput detection conditions in strong field physics research.

Takahashi believes that by capturing the motion of electrons, attosecond lasers have made significant contributions to fundamental science. "They are expected to be used in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions," he said.

The ultimate goal of Takahashi is to exceed the speed of the attosecond laser and generate shorter pulses. "By combining a single period laser with higher-order nonlinear optical effects, it is possible to generate optical pulses with a time width of Ze seconds (one Ze second=10-21 seconds)," he said. "My long-term goal is to open the door to research on Zeosecond lasers and open up the next generation of ultra short lasers after Atosecond lasers."

Source: Laser Net

Related Recommendations
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    See translation
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    See translation
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    See translation
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    See translation
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    See translation