English

Ultra thin two-dimensional materials can rotate the polarization of visible light

804
2024-04-27 13:54:18
See translation

For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate in one direction but blocks all light in the other direction.

In a recent study, physicists from Germany and India showed that ultra-thin two-dimensional materials such as tungsten selenide can rotate the polarization of visible light at certain wavelengths by several degrees under a small magnetic field suitable for chip use. Scientists from the University of M ü nster in Germany and IISER in Pune, India, published their research findings in the journal Nature Communications.

One of the problems with traditional optical isolators is their considerable volume, ranging in size from a few millimeters to a few centimeters. Therefore, researchers are still unable to manufacture micro integrated optical systems on chips that can compete with everyday silicon-based electronic technology. Currently, there are only a few hundred components on integrated optical chips.

Faraday effect in two-dimensional semiconductors
By contrast, computer processor chips contain billions of switching elements. Therefore, the research work of the German and Indian teams has taken a step forward in the development of miniature optical isolators. The two-dimensional materials used by the researchers are only a few atomic layers thick, making them 100000 times thinner than human hair.

Professor Rudolf Bratschitsch from the University of Minster said, "In the future, two-dimensional materials may become the core of optical isolators and enable on-chip integration of current and future quantum optical computing and communication technologies."
Professor Ashish Arora from IISER added, "Even the bulky magnets required for optical isolators can be replaced by atomic level thin two-dimensional magnets. This will greatly reduce the size of photonic integrated circuits."

The research team deciphered the mechanism that led to their discovery: bound electron hole pairs, also known as excitons, in two-dimensional semiconductors cause strong polarization rotation of light when ultra-thin materials are placed in a small magnetic field.
Arora said, "Conducting such sensitive experiments on two-dimensional materials is not easy because the sample area is very small. Scientists had to develop a new measurement technique that is about 1000 times faster than previous methods."

Source: Physicist Organization Network

Related Recommendations
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    See translation
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    See translation
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    See translation
  • The green and blue laser diode series provides higher beam quality

    Rutronik has expanded its optoelectronic product portfolio by introducing green and blue laser diodes packaged in metal cans TO38 and TO56 using AM OSRAM. They leave a deep impression with improved beam quality and stricter electro-optic tolerances. The power level of the laser diode ranges from 10mW to 100mW. Diodes such as PLT3 520FB and PLT5 450GB are now available on the market.The flexibility...

    2024-01-31
    See translation
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    See translation