English

Ultra thin two-dimensional materials can rotate the polarization of visible light

295
2024-04-27 13:54:18
See translation

For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate in one direction but blocks all light in the other direction.

In a recent study, physicists from Germany and India showed that ultra-thin two-dimensional materials such as tungsten selenide can rotate the polarization of visible light at certain wavelengths by several degrees under a small magnetic field suitable for chip use. Scientists from the University of M ü nster in Germany and IISER in Pune, India, published their research findings in the journal Nature Communications.

One of the problems with traditional optical isolators is their considerable volume, ranging in size from a few millimeters to a few centimeters. Therefore, researchers are still unable to manufacture micro integrated optical systems on chips that can compete with everyday silicon-based electronic technology. Currently, there are only a few hundred components on integrated optical chips.

Faraday effect in two-dimensional semiconductors
By contrast, computer processor chips contain billions of switching elements. Therefore, the research work of the German and Indian teams has taken a step forward in the development of miniature optical isolators. The two-dimensional materials used by the researchers are only a few atomic layers thick, making them 100000 times thinner than human hair.

Professor Rudolf Bratschitsch from the University of Minster said, "In the future, two-dimensional materials may become the core of optical isolators and enable on-chip integration of current and future quantum optical computing and communication technologies."
Professor Ashish Arora from IISER added, "Even the bulky magnets required for optical isolators can be replaced by atomic level thin two-dimensional magnets. This will greatly reduce the size of photonic integrated circuits."

The research team deciphered the mechanism that led to their discovery: bound electron hole pairs, also known as excitons, in two-dimensional semiconductors cause strong polarization rotation of light when ultra-thin materials are placed in a small magnetic field.
Arora said, "Conducting such sensitive experiments on two-dimensional materials is not easy because the sample area is very small. Scientists had to develop a new measurement technique that is about 1000 times faster than previous methods."

Source: Physicist Organization Network

Related Recommendations
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    See translation
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    See translation
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    See translation
  • Laser Swing Welding: Principles, Characteristics, and Applications

    Application backgroundLaser swing welding technology was born out of the urgent demand for welding quality and efficiency in modern manufacturing industry. Traditional welding technology has shortcomings in precision, strength, and complex structures, which has led to the rapid application of laser welding in various fields. However, it still has defects such as pores and cracks, and has limitatio...

    2024-12-30
    See translation
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    See translation