English

Diamond Light Source and NPL reach a new five-year agreement

399
2024-04-25 15:50:09
See translation

Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.

The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.
Diamond Light Source is a national synchrotron facility in the UK known for generating 10 billion times brighter light than the sun for scientific research. As a private company, Diamond Light Source has established a joint venture through the UK government's Science and Technology Facilities Committee and the Wellcome Foundation as part of research and innovation in the UK. Diamond Light Source supports a range of applications from structural biology to basic physics and chemistry through its light technology.

Diamond Light Source will collaborate with the National Institute of Metrology (NPL) in the UK, which is responsible for developing and maintaining national primary measurement standards. The National Physics Laboratory is a public enterprise under the Ministry of Science, Innovation and Technology.

When commenting on the signing of the agreement, Dr. JT Janssen, Chief Scientist of the National Physics Laboratory, stated, "Our goal is to combine our professional knowledge and facilities to achieve significant scientific impact. We hope to develop common professional knowledge and improve the effective use of our facilities, as well as strengthen cooperation and mutual support between students and employees."

In addition to joint meetings, networking, and training, the Memorandum of Understanding will also promote collaborative research and skill development opportunities that are of mutual interest to both parties or individuals through a dedicated steering committee composed of representatives from both parties.

These opportunities may include identifying specific subjects for joint graduate training and development. This includes implementing doctoral programs jointly supervised by Diamond Light Source and the National Physical Laboratory. In addition, they will also conduct synchronous accelerator and measurement science course exchanges for each facility's student population, which will include content provided by two organizations and factory visits.

Professor Gianluigi Botton, CEO of Diamond Light Source, summarized, "This agreement will create enormous opportunities for scientists and students in new sciences and organizations. A key goal is to promote collaboration around student engagement activities, including utilizing our respective expertise to provide valuable scientific training for each other's student communities."

Source: OFweek Laser Network

Related Recommendations
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    See translation
  • Focusing on the headquarters of Kuaidiqin Gen, a place of innovation and prosperity

    Have you ever imagined finding exquisitely designed and vibrant buildings in an industrial park? The headquarters of Deutschengen in Germany is such a place that combines creativity and practicality.Carefully planned and focused sustainable architecture combines design and functionality, showcasing the best appearance of industrial architecture and a vivid practice of its corporate spirit and valu...

    2024-04-28
    See translation
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    See translation
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    See translation
  • Latest breakthrough! 3500W free output blue semiconductor laser

    The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to...

    2024-09-03
    See translation