English

Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

868
2024-03-30 13:47:51
See translation

A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.


Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for device manufacturing, previously used in on-chip lasers, detectors, and waveguides. Combined with these other optical components, new quantum light sources have opened up the potential to construct complex quantum circuits on a single chip.

Quantum optics is a rapidly developing field, where many experiments use photons to carry quantum information and perform quantum calculations. However, in order for optical systems to compete with other quantum information technologies, quantum optical devices need to be reduced from desktop size to microchip size. An important step in this transformation is the development of quantum light generation on semiconductor chips. Several research teams have accomplished this feat using materials such as aluminum gallium arsenide, indium phosphide, and silicon carbide. However, in addition to quantum light sources, fully integrated photonic circuits also require a series of components.

In order to ultimately establish such a complete circuit, Zhou Qiang and his colleagues from the University of Electronic Science and Technology of China turned their attention to gallium nitride. This material is renowned for its application in the first batch of blue LEDs, a development recognized by the 2014 Nobel Prize in Physics. Recent studies have shown that gallium nitride grown on sapphire can be used for many quantum optical functions, such as lasers, optical filtering, and single photon detection. "The gallium nitride platform provides broad prospects for advancing photonic quantum chips in the near future," Zhou said.

In order to manufacture gallium nitride quantum light sources, Zhou and his colleagues grew a layer of material thin film on a sapphire substrate, and then etched a diameter of 120 in the thin film μ The ring of m. In this structure, photons can propagate in a loop, similar to the way sound waves propagate on the curved walls of a whispering gallery. Next to the ring, researchers etched a waveguide for transmitting infrared laser. The coupling between two optical elements allows some laser photons to enter the ring from the waveguide.

In the experiment, the detector recorded the spectrum of the waveguide output light, revealing the discrete decrease of multiple wavelengths. These decreases correspond to resonance in the ring - when the wavelength of a specific photon fits an integer within the circumference of the ring. Resonant photons in waveguides can enter the ring and be trapped inside.

However, due to an effect called four wave mixing, resonant photon pairs entering the ring sometimes annihilate, causing a new pair of resonant photons to be generated and leave through the waveguide. It is expected that the two photons in each exit pair will be entangled with each other. To verify this entanglement, the research team measured the overlapping photons, indicating that they produce interference patterns - light and dark stripes - during imaging. In contrast, non entangled pairs produce a broad bright spot.

The interference level is a measure of the degree of photon entanglement. The degree of entanglement generated by gallium nitride rings is comparable to the level measured by other quantum light sources, Zhou said. "We demonstrate that gallium nitride is a good quantum material platform for photon quantum information, where the generation of quantum light is crucial," he said.

"In recent years, quantum optics has developed at an astonishing speed," said Thomas Walther, a quantum optics expert at the Technical University of Darmstadt in Germany. He said that moving forward will require small, sturdy, efficient, and relatively easy to manufacture components. Therefore, Zhou and his colleagues have demonstrated that gallium nitride is a promising material for manufacturing pump sources, quantum light sources, and single photon detectors. He said providing a platform for all these devices would be an important step forward, as it could reduce the cost of manufacturing such systems and make them more compact and robust than they are now.

Source: Laser Net

Related Recommendations
  • The femtosecond laser was used to manufacture a magnetically responsive "Janus Origami" robot, which realized the effective integration of various droplet manipulation functions

    Recently, the reporter learned from the University of Science and Technology of China that Professor Hu Yanlei's team and his collaborators in the micro-nano Engineering Laboratory of the School of Engineering Science and Technology of the School have prepared a magnetic-responsive double-God origami robot that can be used for cross-scale droplet manipulation using femtosecond laser micro-nano man...

    2023-09-12
    See translation
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    See translation
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    See translation
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    See translation