English

Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

947
2024-03-18 13:56:19
See translation

Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.

John Hall's research focuses on understanding and manipulating stable lasers, laying the technical foundation for measuring small fractional distance changes caused by gravitational waves passing through them. This work on laser arrays earned him the 2005 Nobel Prize in Physics.

On this basis, JILA and NIST academicians Jun Ye and their team embarked on an ambitious journey to expand the boundaries of precision measurement. They focus on improving the Pound Reverse Hall (PDH) method, a specialized technique developed by RV Pound, Ronald Drever, and Jan Hall, which plays a crucial role in precision optical interferometry and laser frequency stability.

Although the PDH method is crucial for ensuring laser frequency stability, the limitations of residual amplitude modulation (RAM) may affect measurement accuracy. In a recent paper published in Optica, Ye's team, along with JILA electronics staff Ivan Ryger and Hall, proposed a new PDH method. This method reduces RAM to an unprecedented low level, simplifies the system, and enhances robustness.

PDH technology is the foundation of various experiments, from gravitational wave interferometers to optical clocks. Further improvement of this technology can bring progress to many scientific fields.

The PDH method was introduced in 1983 and has become the cornerstone of laser physics, widely used in various experiments. It precisely measures laser frequency or phase fluctuations by introducing special "sidebands" around the main beam (referred to as the "carrier"). Comparing these sidebands with the main carrier helps detect subtle changes in frequency or phase relative to the reference, thereby reducing noise and errors.

Physicists use this technique to detect different environments, such as optical cavities made of mirrors, by "locking" the laser into the cavity. However, noise like RAM can alter the relative offset of the reference beam, thereby affecting stability.

Reducing RAM is crucial for improving the stability of PDH technology and laser measurement. The new method developed by JILA researchers is expected to simplify this task and make significant progress in precision measurement and laser physics.

Source: Laser Net

Related Recommendations
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • The largest ultra fast laser production base in the northwest has been completed and put into operation

    As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary ...

    2024-04-28
    See translation
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    See translation
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    See translation