English

Using a new type of ground laser to track space debris

768
2024-03-14 14:39:54
See translation

The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.

The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.

Observatory Director Pawe ł  Lejba emphasized the importance of this upgrade, saying, "Thanks to funding from the Ministry of Science and Higher Education, we are able to purchase high-power, pulsed, and nanosecond Nd: YAG lasers along the integrated optical laser rangefinder system, which is being developed directly at our laser station, which is part of the Borowitz Celestial Geodynamic Observatory CBK PAN.".
Space debris, especially in low Earth orbit, has become an increasingly challenging issue. Approximately 30000 fragments larger than 10 centimeters were also discovered in the orbital belt less than 2000 kilometers from the Earth's surface.

They travel at a speed of about 7 kilometers per second, threatening major objects such as satellites and the International Space Station. The International Space Station orbits the Earth at an altitude of approximately 400 kilometers and flies around the Earth about 15 times a day.
The European Space Agency reported that in 2022 alone, 2409 payloads were sent into orbit. Most of them are small satellites designed to burn out when they re-enter the atmosphere in two years. With the continuous expansion of commercial space activities such as StarLink Internet satellite system, the number of man-made objects around the earth is growing rapidly.

In 2009, the Iridium 33 satellite collided with the Russian Cosmos 2251 satellite, marking the first such disaster in history, resulting in the complete destruction of both satellites and the production of over 700 pieces of debris.

In order to mitigate this risk, the Inter Agency Space Debris Coordination Committee was established in 1993. It issued guidelines stating that inactive satellites must be removed from orbit within 25 years after the completion of the mission. This directive aims to prevent the so-called Kessler syndrome, where the density of objects in space is so high that collisions between fragments will lead to a series of further collisions.

The new laser at Borowiec station is funded by a 2.3 million zloty grant, provided by Eurotek International headquartered in Warsaw, and is a key tool to address this challenge. It will be put into use in the second half of 2024 and will provide accurate information on the quantity and orbit of space debris to support efforts to clean up space. Its detection system allows for the reception of photons sent by lasers to objects located in Earth's orbit. When the beam of light reaches the tracked object, it bounces off the object and returns to the rangefinder, allowing for precise determination of the object's height and velocity relative to the Earth.

Since the 1980s, the Borowiec laser station has been a part of the Astro Geodynamic Observatory and a member of the International Laser Ranging Service. It conducts laser measurements of the distance to artificial satellites and space debris on Earth, making it a unique institution in Poland.
The observatory also has a time laboratory, one of the three stations of the country's most accurate atomic clock and the large international radio telescope LOFAR.

Source: Laser Net

Related Recommendations
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    See translation
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    See translation
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    See translation
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    See translation
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    See translation