English

Researchers improve laser behavior by tying laser knots

463
2024-03-07 13:51:35
See translation

Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.

A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very countable and can be counted in picoseconds or femtoseconds, that is, trillions of a second or billions of a second. Each of these pulses can provide high power and have many applications, including medical ophthalmic surgeries, nuclear reactors, and optical storage systems. For example, in ophthalmic surgery, they can provide precise cutting ability without generating the heat generated by a continuous beam of light. In the locked mode, this is the amplitude and phase of the light passing through the resonant cavity on the laser.

The resonant wave in a mode-locked laser forms a stable pulse mode. Researchers have now introduced new coupling into the resonant light pulses in the laser cavity to enhance the robustness of the mode-locked laser. This progress enables scientists to achieve topological time mode locking, despite defects, manufacturing defects, and environmental noise, pulse modes still exist. This study may improve frequency combs for use in communication, sensing, and computing devices. Traditional frequency combs are easily affected by environmental instability and noise.

A paper describing these findings has been published in Natural Physics. The corresponding author of the study, Alireza Marandi, said, "This fundamental research may have many applications. By implementing topological behavior in mode-locked lasers, we are essentially creating a junction that can make the laser's behavior more robust to noise. If the laser is usually in a mode-locked state and you shake it, everything will go crazy.". However, if the laser pulses are tangled together, you can shake the system without any confusion, at least within a certain range of shaking. Researchers plan to use new and improved lasers to access nonlinear topological physics that traditional experimental platforms cannot achieve.

Source: Laser Net

Related Recommendations
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    See translation
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    See translation
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    See translation
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    See translation
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    See translation