English

Particles have "fuzzy memory" in solid-state batteries

219
2024-02-18 14:59:02
See translation

When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.


The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.
This discovery has improved the understanding of solid-state batteries, which are candidates for the next generation of safer and more powerful batteries.
A paper describing this study was published in the journal Nature.


The team is studying the behavior of ions in solid-state battery electrolytes when a laser emits a sudden voltage through it.
Previously, researchers observed that ions in these electrolytes "jump" from one place to another in a chaotic manner, ultimately causing charges to flow.

But the team found that within one billionth of a second, the ions briefly changed direction and returned to their previous position - then continued their chaotic way.
The main author Andrei Poletayev is a postdoctoral researcher at the University of Oxford, who refers to it as "fuzzy memory.".

"Researchers have been using macroscopic tools to study ion transport for a long time, and they cannot observe what we see in this study," Poletayev said.
Researchers use high-frequency lasers with pulses of only a few trillions of seconds to observe the movement of ions - the light reflected from the electrolyte can tell them what the ions are doing.

"Many strange and unusual things happen during ion hopping," said senior author Aaron Lindenberg, a professor at Stanford University and the SLAC National Accelerator Laboratory in the United States, where experiments were conducted.
When we apply the force of vibrating the electrolyte, ions do not react immediately like most materials.
Ions may sit there for a while, suddenly jump up, and then sit there for a long time. You may need to wait for a while before suddenly experiencing a huge displacement.
Therefore, there are randomness factors in this process, which makes these experiments difficult.

Source: Laser Net

Related Recommendations
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    See translation
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    See translation
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    See translation
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    See translation
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    See translation