English

The new chip opens the door to artificial intelligence computing at the speed of light

229
2024-02-18 10:16:33
See translation

Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.

The design of a silicon photonic chip was the first to combine the Benjamin Franklin Medal winner with H Professor Nedwell Ramsey Nader Engheta's pioneering research on manipulating materials at the nanoscale to use light for mathematical calculations is combined with the SiPh platform, which uses silicon as a cheap and abundant element for large-scale production of computer chips.

The interaction between light waves and matter represents a possible way to develop computers that have replaced the limitations of today's chips, which are basically based on the same principles as chips in the early stages of the computing revolution in the 1960s.

In a paper published in Nature Photonics, Engheta's team, along with the team of Associate Professor of Electrical and Systems Engineering Firoz Aflatouni, described the development of a new chip.

"We have decided to work together," Engheta said, leveraging the fact that Aflatouni's research team has pioneered nanoscale silicon devices.

Their goal is to develop a platform to perform so-called vector matrix multiplication, which is the core mathematical operation of neural network development and functionality. Neural networks are the computer architecture of today's artificial intelligence tools.

Engheta explained, "You're not using highly uniform silicon wafers, but making the silicon thinner, such as 150 nanometers," but only in specific areas. These height changes - without adding any other materials - provide a way to control the propagation of light through the chip, as the height changes can be distributed to cause light to scatter in specific modes, allowing the chip to perform mathematical calculations at the speed of light.

Aflatouni said that due to restrictions imposed by commercial foundries producing chips, this design is ready for commercial applications and may be applicable to graphics processing units. With the widespread interest in developing new artificial intelligence systems, the demand for graphics processing units has surged.

"They can use silicon photonics platforms as additional components," Aflatouni said, "and then you can accelerate training and classification speed.".

In addition to faster speeds and lower energy consumption, Engheta and Aflatouni chips also have privacy advantages: because many calculations can be performed simultaneously, sensitive information does not need to be stored in the computer's working memory, making future computers driven by this technology almost impossible to crack.
"No one can invade non-existent memory to access your information," said Aflatouni.

Other co authors include Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, and Brian Edwards from the School of Engineering at the University of Pennsylvania.

Source: Laser Net

Related Recommendations
  • Showcasing the world's fastest photonics alignment system for SiPh chips on Photonics West

    With its proprietary fast multi-channel photon alignment algorithm and professional high-precision machinery, PI helps customers improve production efficiency to participate in the rapidly growing silicon photonics market. Over the past decade, PI has been continuously expanding its range of automatic photon alignment engines and will launch new systems at both ends of the spectrum in this year's ...

    2024-01-19
    See translation
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    See translation
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    See translation
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    See translation
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    See translation