English

Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

185
2024-01-23 14:07:18
See translation

Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause noise and distortion in the original image, which may affect the quality of the final SR image.

Therefore, for SR microscope developers and users, having a reliable method to quantify reconstruction quality is crucial. Due to the improved distinguishability of SR imaging, it is necessary to conduct a thorough evaluation, but existing tools are often insufficient when the resolution of the authorities changes within the field of view.

In a recent study published in Light: Science and Applications, a group of scientists introduced a new method called rolling Fourier ring correlation. This method helps to directly represent resolution heterogeneity in the super-resolution domain, achieving unparalleled SR scale mapping and easily associating resolution mapping with SR content. In addition, the team also improved the resolution scaling error map to achieve more accurate system error estimation. This is combined with rFRC to create a combination technique called PANEL, which focuses on accurately locating low reliability areas from SR images.

Scientists have successfully applied PANEL to various imaging methods, including single molecule localization microscopy, super-resolution radial wave, structural illumination microscopy, and deconvolution methods, verifying the effectiveness and stability of its quantitative spectra. PANEL can be used to improve SR images. For example, it has been effectively used to fuse SMLM images reconstructed through various algorithms, providing high-quality SR images.

Source: Laser Net

Related Recommendations
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    See translation
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    See translation
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    See translation
  • Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

    Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sens...

    2024-05-08
    See translation
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    See translation