English

Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

713
2024-01-06 13:40:20
See translation

Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structural patterns of photomasks onto a substrate coated with photoresist. Impressively, it can create optical components with feature sizes as small as 85 nm, comparable to more expensive and complex methods such as multiphoton and electron beam lithography.

MPP technology unfolds through the design of structural patterns, which are initially printed on transparent foil. Then, through carefully arranged lithography settings and subsequent wet etching processes, these patterns are transferred onto a chromium photomask. This innovative approach is particularly beneficial for applications that require rapid prototyping and economic manufacturing, making it a blessing for creating optical devices essential for microfluidic devices, biosensors, and other biomedical research or consumer electronics products.

In their research process, scientists were able to generate diamond nanocone structures using thermal annealing methods. They demonstrated that the extraction efficiency of nitrogen vacancy center emitters in nanostructures depends on the geometry of the nanocone/nanopillar, emitter polarization, and axis depth. The research results indicate that nanocones and nanocolumns have an advantage in extracting from emitter dipoles with s - and p-polarization, respectively. The emitter in the s-polarized nanocone and the emitter in the p-polarized nanopillar have achieved the most promising results in terms of collection efficiency.

These groundbreaking insights may have a significant impact on the design and manufacturing of micro/nano optical devices based on NV centers in the future. This study adds new dimensions to the field of lithography and has been published in the respected journal Light: Advanced Manufacturing. MPP technology has the characteristics of high resolution, low cost, and user-friendly operation, which is likely to open up the next level of innovation in optical device manufacturing.

Source: Laser Net

Related Recommendations
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    See translation
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    See translation
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    See translation
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    See translation
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    See translation