English

High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

405
2023-12-25 14:16:07
See translation

A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.

Femtosecond transient microscopy is an important tool for studying the ultrafast transport characteristics of excited states in solid samples. Most implementations are limited to photoexcitation of a single diffraction limit point on the sample and tracking the temporal evolution of subsequent carrier distribution, thus covering a very small sample area.

Recently, scientists from Italy and Spain have demonstrated how to construct an all optical phase-locked camera by using off-axis holography, significantly increasing the field of view of ultrafast microscopes. The camera decouples the signal demodulation speed from the maximum detector frame rate.

In this original work published in the journal Ultrafast Science, researchers demonstrated simultaneous transient imaging of dozens of individual nanoobjects, with the entire field of view excitation being desirable. It is not yet clear how to apply new holographic techniques in solid-state samples that require diffraction limit excitation. Ideally, a diffraction limited excitation point array covering the entire field of view will be generated, so that multiple points in the large sample area can be detected simultaneously.

The article "High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope" demonstrates how to achieve this feature by imaging a pinhole array at the sample position. This not only helps to obtain statistical information about sample photophysics, but also for uniform samples, the signals of all light spots can be averaged, greatly improving the signal-to-noise ratio.

Source: Laser Net

Related Recommendations
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    See translation
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    See translation
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    See translation
  • The research team establishes synthetic dimensional dynamics to manipulate light

    In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.Resear...

    2024-03-20
    See translation
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    See translation