English

A New RIEGL Laser Scanning Solution for Drone Data Acquisition

627
2023-12-01 15:01:23
See translation

With its latest developments, RIEGL once again emphasizes its pioneering role as a supplier of high-performance LiDAR sensors and integrated systems with UAS. The continuous trend in the drone system industry requires measurement level laser scanners that match the integrated performance of compact multi rotor and high-speed vertical takeoff and landing or fixed wing drone platforms.

RIEGL has recognized this trend and adjusted its product range in this direction. The typical accuracy/precision and multi-target capability of RIEGL, combined with excellent measurement range, wide field of view, extremely high laser pulse repetition rate, and fastest production line speed, are the foundation of user success. These key attributes allow the drone system to fly at the maximum possible operating altitude, thereby achieving the highest possible area coverage. The on-site time and collection flight time are greatly reduced, thereby reducing overall costs and improving the safety of drone system applications. At the same time, more accurate point cloud data can be obtained and comprehensive coverage can be achieved. This increases the flexibility of the platform used for the project, and most importantly, improves efficiency.

The new RIEGL VUX-18024 provides a wide field of view of 75 degrees and an extremely high pulse repetition rate of up to 2.4 MHz. These features, combined with a scanning speed of up to 800 lines per second, make it highly suitable for high-speed measurement tasks and applications that require optimal line and point distribution. Typical applications include surveying and monitoring of key infrastructure such as power lines, rails, pipelines, and runways. The RIEGL VUX-18024 provides mechanical and electrical interfaces for IMU/GNSS integration, as well as up to 5 external cameras, reflecting the overall dimensions of the VUX-160. To achieve smooth and direct data storage, an internal SSD memory with 2 TByte storage capacity and a removable CFast storage card can be used. This sensor further supplements RIEGL's mature VUX-12023, VUX-160 type 23, and VUX-24024 series, and can be used as an independent sensor or in various fully integrated laser scanning system configurations, equipped with IMU/GNSS systems and optional cameras.

RIEGL VUX-24024 is a new enhanced version of the mature RIEGL VUX-240, which now offers higher pulse repetition rates and faster scanning speeds to further improve on-site performance and workflow efficiency. This sensor has a wide field of view of 75 degrees and an extremely fast data acquisition rate of up to 2.4 MHz, achieving a measurement rate of up to 2 million measurements per second, making it very suitable for high-density applications such as power line, track, and pipeline detection. Its scanning speed of up to 600 lines per second not only allows for operations on fast flying drones, but also allows for the operation of small helicopters, rotorcraft, and other manned aircraft at altitudes of up to 4700 feet.

The mechanical and electrical interfaces allow for optional integration of IMU/GNSS systems and up to 4 cameras. The data can be stored in the internal 2 TByte SSD memory, or can be stored using a removable CFAST storage card to transfer the data to a PC.
In addition to independent versions of the RIEGL miniVUX-1UAV and miniVUX-3UAV LiDAR sensors, RIEGL also offers system solutions for IMU/GNSS systems and cameras.

Now, RIEGL provides RiLOC, an integrated component used to supplement RIEGL's kinematic LiDAR system for locating and orienting LiDAR data in a reference coordinate system. This fully integrated subsystem has a compact and lightweight appearance, directly connected to the casing of the miniVUX-1UAV or miniVUX-3UAV, and the total weight of the system is only 1.75 kg. RiLOC itself consists of one or two GNSS receivers, an inertial measurement unit, and a data acquisition controller with accompanying software. It utilizes tight coupling to handle inertia, GNSS, and LiDAR data, providing a new entry-level choice for RIEGL's cost-effective UAS LiDAR system solution.

Source: Laser Net

Related Recommendations
  • ICFO launches its 13th subsidiary Shinephi for interferometric imaging

    Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Inno...

    08-11
    See translation
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    See translation
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    See translation
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    See translation
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    See translation