English

New laser technology unlocks deuterium release in aluminum layers

801
2023-11-25 13:55:47
See translation

In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.
A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was published in the Journal of Spectroscopy Part B: Atomic Spectroscopy.

The focus of this study is on the formation of 1 on substrates with different surface characteristics using high-power pulsed magnetron sputtering technology μ M aluminum layer. The key aspect is the software controlled laser pulse energy operation, which can achieve a seamless transition from layer ablation to layer desorption.

The research team evaluated the amount of deuterium released at the end of the laser induction process using quadrupole mass spectrometry. They compared it with the results of thermal desorption spectroscopy, and the results showed that the analyzed sample contained approximately 2.6 ×  ten ²¹  D at/m ²  Deuterium. Mass spectrometry data shows that 85% and 9% are released through LIA and LID, respectively.

The research team can also determine the boundary between ablation and desorption processes by mathematically modeling the data. The analysis of the aluminum layer surface combined with the substrate surface provides important insights into the mechanism of controlling deuterium atom release through these laser-induced processes.

However, the biggest and most important conclusion is that the research team can confirm their findings. By using optical emission spectroscopy, the research team confirmed that the substrate interface had been reached during the LIA-QMS analysis.

From advancing our understanding of materials science to potentially revolutionizing energy applications, these newly launched laser technologies have the potential to manipulate the atomic structure within materials. This has opened up a path for further research and promoted innovation in energy production and material engineering. This study demonstrates the potential of laser technology in manipulating atomic behavior within materials.

Source: Laser Net

Related Recommendations
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    See translation
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    See translation
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    See translation
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    See translation
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    See translation