English

Automated methods for background estimation in laser spectroscopy

758
2023-11-24 14:35:28
See translation

A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.

When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the laser and the sample, pay attention to changes in laser energy, and the convergence of environmental noise, which helps to create different backgrounds in the collected spectra. All these obstacles will have a significant impact on the analysis.

In a recent study published in the Journal of Spectroscopy Part B: Atomic Spectroscopy, a research group from Jiangnan University introduced a new LIBS method aimed at automatically estimating and removing different spectral backgrounds. Under the leadership of Chen Hao from the School of Mechanical Engineering at Jiangnan University, researchers proposed a method that utilizes window functions, differential concepts, and piecewise cubic Hermite interpolation polynomials.

In this experiment, Chen and his team conducted a series of simulation experiments to evaluate background correction methods. They found that their proposed method performs better than existing techniques such as asymmetric least squares and modelless background correction. By utilizing window functions, Pchip, and differential concepts, the new method improves the ability to eliminate white noise and baseline distortion, achieving a better signal-to-noise ratio than previous methods.

The research team also found that their method improved the processing of background baseline jumps.
The researchers applied their method to seven different aluminum alloys and observed a correlation between spectral intensity and magnesium concentration.

It is worth noting that in the experiment of measuring magnesium concentration in aluminum alloys, the correlation coefficient between predicted concentration and actual concentration significantly improved after correction.

The coefficients for ALS and model free methods are 0.9913 and 0.9926, respectively, while the coefficients for this new method have decreased from the initial 0.9943 to 0.9154.

These findings not only validate the effectiveness of this automated method, but also pave the way for future research to improve the accuracy of LIBS spectral analysis.

Source: Laser Network

Related Recommendations
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    See translation
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    See translation
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    See translation
  • ICFO launches its 13th subsidiary Shinephi for interferometric imaging

    Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Inno...

    08-11
    See translation
  • New EUV lithography technology is introduced: achieving significant cost reduction and efficiency improvement

    Recently, Professor Tsumoru Shintake from Okinawa University of Science and Technology (OIST) proposed a revolutionary extreme ultraviolet (EUV) lithography technology that not only surpasses the boundaries of existing semiconductor manufacturing, but also heralds a new chapter in the industry's future.This innovation significantly improves stability and maintainability, as its simplified design o...

    2024-08-07
    See translation