English

Sill Optics launches F-Theta lenses for photovoltaic applications

113
2023-11-22 13:58:45
See translation

The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective and passivation layers.

In addition to cost-effective and rapid production, this process also provides other advantages for the industry, such as high precision and achievable linewidth of several micrometers. The F-Theta lens S4LFT1330-075 has been developed specifically for such applications.

Especially, lasers within the ultraviolet range are used to remove anti reflective and passivation layers. These layers improve optical and electrical performance, thereby increasing the efficiency of solar cells. In the ultraviolet range, a particularly small focal size allows for a corresponding narrow linewidth.

Sill Optics GmbH has become a leading supplier of F-Theta lenses in the photovoltaic field. Although S4LFT1330-075 is suitable for M12/G12 wafers, it can also process smaller wafers up to M2.

The S4LFT1330-075 lens is suitable for the wavelength range of 343 nm to 355 nm, with a spot size of<18 μ m. On a field of view of 210 mm x 210 mm. This product series includes other lenses with similar specifications, which are also designed for other wavelengths in the green and infrared ranges.

Source: Laser Network

Related Recommendations
  • Shanghai Optics and Machinery Institute has made progress in near-field state analysis of high-power laser devices based on convolutional neural networks

    Recently, the research team of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics identified and analyzed the abnormal near-field output of the SG - Ⅱ upgrade device by using the spatial domain computing method and the deep learning model with attention mechanism in response to the requirements of real-time and effective...

    2024-04-25
    See translation
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    See translation
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    See translation
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    See translation
  • By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

    According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...

    2023-10-27
    See translation