English

Short pulse lasers in the form of chips use the so-called mode coupling principle

340
2023-11-10 14:56:31
See translation

Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.

A team led by Qiushi Guo from the California Institute of Technology in Pasadena has constructed their prototype semiconductor for short pulse lasers based on gallium arsenide, which is used to generate laser beams. They combined it with a crystal of another compound called lithium niobate, which is used as a conductor for light waves. Researchers arranged these two components on the basis of silicon and silicon dioxide to produce laser chips with a size of only a few millimeters.

Like other short pulse lasers, the new micro laser uses the so-called mode coupling principle: the light waves in the laser match each other in a mutually amplified manner, resulting in extremely short light pulses. Researchers successfully achieved this by applying high-frequency electric fields adapted to laser pulses. Previously, larger short pulse lasers also used this principle. But in the new laser, they cleverly arranged tiny waveguides so that they could keep the laser correspondingly small.

Trillionths of a second of short infrared flash
In testing, the prototype emitted short flashes of less than five picoseconds - millionths of a second infrared light. Their wavelength was 1065 nanometers and they repeated about 10 billion times per second. When doing so, the maximum power of the laser is half a watt, which is 500 times that of a traditional laser pen.

In the future, micro lasers can pave the way for small detectors, such as detecting bacteria and viruses in smartphones. They reflect the incident laser in a unique way, so they can be detected using highly sensitive sensors. Other applications lie in chips that use light to process digital data, making them faster than other systems. Even atomic clock lasers can be used in chip form. These can achieve accurate navigation without GPS signal, "Guo said. Considering these applications, researchers now hope not only to further increase the power of short pulse lasers, but also to make the optical pulses shorter - as low as a few femtoseconds.

Source: Laser Network

Related Recommendations
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation
  • Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

    The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integr...

    2023-10-23
    See translation
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    See translation
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    See translation
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    See translation