English

Researchers have successfully developed the world's first superconducting broadband photon detector

846
2023-11-02 14:44:08
See translation

Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.

The band width of the detector is more than 200 times that of traditional superconducting nanoband photon detectors. This technology helps to solve the problems of low productivity and polarization dependence in traditional SNSPD. The new SWSPD is expected to be applied to various advanced technologies such as quantum information communication and quantum computers, enabling these advanced technologies to be applied in society as soon as possible.

This work is published in the journal Optical Quantum.
Photon detection technology is a strategic core technology that is currently being intensively researched and developed globally in many advanced technology fields such as quantum information communication and quantum computing to achieve innovation. It is also an innovative technology in fields such as live cell fluorescence observation, deep space optical communication, and laser sensing.

The NICT research team has developed an SNSPD with a band width of 100 nm or less. They successfully achieved high-performance beyond other photon detectors and applied them to quantum information communication technology, proving their practicality. 

However, the preparation of SNSPDs requires the use of advanced nanoprocessing techniques to form nanoband structures, which can lead to changes in detector performance and hinder the improvement of productivity. In addition, the polarization dependence of superconducting nanoribbons due to their winding structure also limits their application as photon detectors.

In this work, NICT invented a new structure called "high critical current group structure", which can achieve efficient photon detection even by widening the band width in superconducting strip photon detectors. It successfully developed a SWSPD with a width of 20 microns, which is more than 200 times wider than traditional nanostrip photon detectors, and achieved high-performance operation for the first time in the world.

The nanobelt type developed by NICT requires the formation of extremely long superconducting nanobelts with a bandwidth of 100 nm or less, in a winding and tortuous shape. The broadband type can now be formed using only a single short straight superconducting tape.

This SWSPD does not require nanomachining technology and can be manufactured through high productivity universal lithography technology. In addition, due to the wider bandwidth of the stripe compared to the incident light spot illuminated from the optical fiber, polarization dependence in the nanostrip detector can be eliminated.

Through the performance evaluation of the detector, the detection efficiency in the telecommunications band is 78%, which is equivalent to 81% of the nanoband type. In addition, the numerical value of timing jitter is better than that of nanostrip type.

Compared with the nanobelt type, this achievement enables photon detectors to have higher productivity and superior performance and characteristics. Nanobelt type has been positioned as an indispensable photon detection technology in advanced technology fields such as quantum information communication. This technology is expected to be applied to various quantum information communication technologies and become an important foundational technology for achieving the networked quantum computer advocated by JST's lunar landing goal 6.

In the future, the team will further explore the HCCB structure in SWSPD, which can efficiently detect photons not only in the telecommunications band, but also in a wide range of wavelengths from visible light to mid infrared. In addition, they will also attempt to further expand the size of the photon receiving area to expand applications such as deep space optical communication technology, laser sensing, and live cell observation.

Source: Laser Network

Related Recommendations
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    See translation
  • NASA Completely Transforms Laser Communication and Space Weather Research

    NASA is a pioneer in space research, once again attracting the attention of the world with fascinating insights. In a recent press release, NASA announced plans to test revolutionary laser communication systems and study the interaction between Earth and space weather.A Great Leap in Space Communication: ILLUMA-TThe SpaceX 29 mission, scheduled for November 5th, will conduct research and technical...

    2023-10-23
    See translation
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    See translation
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    See translation
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    See translation