English

Scientists at St. Andrews University have made significant breakthroughs in compact laser research

836
2023-10-04 14:21:35
See translation

Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.


Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are made of rigid and brittle semiconductor crystals such as gallium arsenide.

Organic semiconductors are a relatively new type of electronic material. They have flexibility, are based on carbon and emit visible light, making the manufacturing of electronic devices simple. They are now widely used in OLED (Organic Light Emitting Diode) screens in most mobile phones.

One limitation of organic semiconductor lasers is that they typically require another laser to power them. For 30 years, researchers have been working hard to overcome this limitation, so scientists at the University of St. Andrews have recently developed an electrically driven organic semiconductor laser, which is particularly important.

The breakthrough achieved by the team, published in the journal Nature, first produced OLEDs with world record light output, and then tightly integrated them with polymer laser structures. This new type of laser emits a green laser beam composed of short light pulses.


At present, this is mainly a scientific breakthrough, but with future development, lasers may be integrated with OLED displays and allow communication between them, or used for spectroscopy to detect diseases and environmental pollutants.

Schematic diagram of the structure of an electrically driven organic semiconductor laser


Professor Ifor Samuel commented, "Manufacturing electrically driven lasers using organic materials is a huge challenge for researchers around the world. Now, after years of effort, we are pleased to have produced this new type of laser.


Professor Graham Turnbull added, "We hope that this new type of laser will consume less energy during the manufacturing process and will produce visible spectrum lasers in the future.

Source: Laser Network

Related Recommendations
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    See translation
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    See translation
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    See translation
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    See translation
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    See translation