English

Scientists use glass to create femtosecond lasers

1194
2023-09-28 17:12:33
See translation

Image source: Federal Institute of Technology in Lausanne, Switzerland

 

Science and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glass? According to the latest issue of Optics magazine, scientists at the Federal Institute of Technology in Lausanne, Switzerland have successfully achieved this, with lasers no larger than credit cards and easier to align.

Researchers stated that due to the lower thermal expansion of glass compared to traditional substrates, it is a stable material. Therefore, they chose glass as the substrate and used commercial femtosecond lasers to etch special grooves on the glass to accurately place the basic components of the laser. Even in precision manufacturing at the micron level, the grooves and components themselves are not precise enough to achieve laser quality alignment. In other words, the reflector is not fully aligned, so at this stage, their glass device cannot be used as a laser.

So, researchers further designed etching to position a mirror in a groove with micro mechanical bending, which can locally twist the mirror when irradiated by femtosecond laser. By aligning the mirror in this way, they ultimately created a stable, small-scale femtosecond laser.

Despite its small size, the peak power of the laser is about 1 kilowatt, and the time to emit pulses is less than 200 femtoseconds, which is so short that light cannot pass through human hair.

This method of permanently aligning free space optical components through laser material interaction can be extended to various optical circuits, with extreme alignment resolutions as low as sub nanometer level.

 

Reprinted from:LDWORLD

Related Recommendations
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    See translation
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    See translation
  • Netherlands Integrated Photonics Ecological Platform Raises € 60 million to Support European Photonics Startups

    PhotonVentures, based in Eindhoven, the Netherlands, has announced the launch of a venture capital fund designed to help early-stage photonic chip startups and scale-up businesses.In the first round of funding, PhotonDelta, a Dutch photonic integrated circuit (PIC) pioneer, raised €60 million as the lead investor and numerous private investors. PhotonVentures said it plans to raise a total of...

    2023-09-02
    See translation
  • Pensievision Wins Luminate NY OPI Accelerator Competition

    New York Governor Kathy Hochul announced last week that Pensievision emerged as the winner of the eighth cohort of the Luminate NY Optics, Photonics, and Imaging (OPI) Startup Accelerator Competition. The San Diego, California-based company was honored as the “Company of the Year” at the Luminate NY 2025 Finals held in Rochester on October 22. The finals were part of SPIE Optifab, the annual confe...

    10-31
    See translation
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    See translation