English

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

183
2023-09-27 14:13:41
See translation

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.

The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.

The importance of micro comb technology
The optical micro comb technology has significant scientific and technological application potential. It can be used for high-precision frequency measurement and is considered one of the most disruptive technologies since the birth of lasers. In short, a micro comb is like a ruler made of light, which can accurately measure the frequency of light.

Its working principle is based on the laser sending photons, which circulate in the micro resonator, causing light to be divided into multiple precise frequencies. These frequencies can be accurately positioned against each other, just like scales on a ruler. Therefore, a micro comb can create a light source containing hundreds or even thousands of frequencies, similar to a laser beam emitted uniformly.

Due to the fact that almost all optical measurements are related to the frequency of light, micro comb technology has a wide range of applications, from instruments used to calibrate and measure light year distance signals in space science to tracking health status through air analysis in healthcare.

Key breakthroughs in solving efficiency issues
However, the previous micro comb technology had a fundamental problem, which was its low efficiency. The energy conversion efficiency between light and micro combs is not high, resulting in only a small portion of power available in the laser beam.

Researchers have made breakthrough progress on this issue. By using two micro resonators, they successfully increased the power of the micro comb laser beam, increasing the efficiency from about 1% to over 50%. This method utilizes the interaction between two micro resonators, where one resonator couples light from the laser with the other resonator, similar to impedance matching in electronic circuits.

Prospects and Applications
The method described in this study has opened up a new field for the application of high-performance lasers and has been patented. Researchers have also established a start-up company, Iloomina AB, to push this technology to a wider market.

The new micro combs have enormous transformative potential as they enable high-performance laser technology to be used in more markets. For example, frequency combs can be used for autonomous LiDAR modules, GPS satellites, and environmental sensing drones, as well as supporting bandwidth intensive artificial intelligence applications in data centers. This breakthrough will accelerate the adoption of high-performance laser technology in various fields, including healthcare and space science.

Source: China Optical Journal Network

Related Recommendations
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    See translation
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    See translation
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    See translation