English

Changchun Institute of Optics and Mechanics has developed blue-green fluorescent transparent ceramics for laser lighting, laying a key fluorescence material foundation for full color laser lighting

166
2023-09-26 14:05:28
See translation

The project of the National Natural Science Foundation of China (Jilin Province) "Multicolor Transparent Silicate Garnet Fluorescent Ceramics for Laser Lighting" presided over by Zhang Jiahua, a researcher in the State Key Laboratory of Luminescence and Applications of Changchun Institute of Optics and Fine Mechanics, has made breakthrough progress, developed green fluorescent transparent ceramics, filled the international gap, and laid a foundation for key fluorescent materials for full-color laser lighting.

The research results are titled "Cyan green mitting Ca3Sc2Si3O12: Ce3+transparent ceramic: a promising color converter for high brightness laser lighting" and published in the top international ceramic journal "Journal of Advanced Ceramics" (2023, 12 (9): 1731-1741)

Laser driven fluorescent transparent ceramics are the preferred solution for obtaining high brightness laser lighting sources, which have urgent needs in automobiles, film and television, and search and rescue lighting. At present, the available fluorescent transparent ceramics for laser illumination are limited to two types of aluminate garnet, yellow YAG: Ce and green LuAG: Ce, which cause incomplete color of the light source and poor color restoration. The lack of cyan is the root cause of these problems, known as the "cyan cavity".

To address the above issues, the project team selected high-efficiency green fluorescent Ca3Sc2Si3O12: Ce3+(CSS: Ce) silicate garnet for ceramic research. In response to the bottleneck of ceramic densification caused by low silicon ion diffusion coefficient, a two-step sintering strategy based on sintering kinetics was proposed, and high-quality green fluorescent transparent ceramics were successfully obtained. Ceramics are suitable for blue light excitation, with a transmittance of 71% at the emission wavelength, an internal quantum efficiency of 91%, a fluorescence quenching temperature of 838 K, and an anti irradiation density of 45.6 W/mm2. At this excitation density, the forward lumen efficiency is 162 lm/W.

The above excellent performance can be comparable to the current commercial YAG: Ce and LuAG: Ce fluorescent transparent ceramics, fully indicating that CSS: Ce silicate garnet fluorescent transparent ceramics are ideal blue-green fluorescence conversion materials for laser lighting, and will play an irreplaceable role in filling "blue-green voids" to achieve full color laser lighting, with broad application prospects.

(a) CSS: Emission spectra of Ce green fluorescent transparent ceramics, transmission spectra, and images under sunlight and blue light; (b) Under the excitation of high-density blue laser, the stable output of lumen flux over time, high brightness blue-green fluorescence images, and temperature distribution maps of ceramic chips, with a maximum temperature of 239 ℃, demonstrate excellent heat resistance.

Source: Sohu

Related Recommendations
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    See translation
  • LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

    The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in AsiaLASER World of PHOTONICS CHINA20th Anniversary Celebration Coming Soon!📅 March 11-13📍 Shanghai New International Expo Centre (SNIEC), Entrance Hall 3🏢 Halls: N1-N5, E7-E4💡 1,400+ exhibitors across over 100,000 square meters Visitor Opening HoursDay 1: March 11 (Tuesday) 9:00 - 17:00Day 2: March 12 (Wednesday)...

    03-10
    See translation
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    See translation
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    See translation
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    See translation