English

Compact short pulse laser with an efficiency of up to 80%

71
2025-11-12 11:08:36
See translation

The research team from the University of Stuttgart and Stuttgart Instruments GmbH has published a groundbreaking research result in the journal Nature - a new compact ultra short pulse laser. This device achieves a significant improvement in efficiency while maintaining excellent precision, with its energy conversion efficiency reaching more than twice that of existing common devices. In addition, its volume has been significantly reduced, making it easy to hold in the hand and having a wide range of application potential. This progress provides an efficient alternative to the existing large volume, high cost short pulse systems in the manufacturing, medical, and scientific research fields.

 


Multipass optical parametric amplifier with laser beam: The new system demonstrates the development of highly efficient and compact short-pulse lasers. Credit: University of Stuttgart / Jonas Herbig and Johann Thannheimer

"With our new system, we can achieve levels of efficiency that were previously almost unattainable," says Prof. Harald Giessen, Head of the 4th Physics Institute at the University of Stuttgart. In tests, the team showed that short-pulse lasers can fundamentally reach 80% efficiency. In practical terms, 80% of the input power becomes usable output. "For comparison: current technologies achieve only about 35% -- which means they lose much of their efficiency and are correspondingly expensive," explains Giessen.

A lot of energy in an extremely short time

Short-pulse lasers emit bursts that last for only nano-, pico-, or femtoseconds (i.e., a few billionths to quadrillionths of a second). Because the pulses are so brief, a large amount of energy can be delivered to a tiny spot almost instantly. The setup combines a pump laser with the short-pulse laser. The pump laser delivers light energy to a special crystal. This crystal drives the process by transferring energy from the pump beam to the ultrashort signal pulse. In doing so, the incoming light particles are converted to infrared light. Infrared enables experiments, measurements, or production steps that visible light cannot achieve. In industry, short-pulse lasers are used in production -- for example, for precise and gentle material processing. They are also employed in medical imaging and in quantum research for exceptionally exact measurements at the molecular scale.

"Designing short-pulse lasers efficiently remains an unsolved challenge," explains Dr. Tobias Steinle, lead author of the study. "In order to generate short pulses, we need to amplify the incoming light beam and cover a wide range of wavelengths." Until now, it has not been possible to combine both properties simultaneously in a small and compact optical system." Wide-bandwidth laser amplifiers typically need crystals that are very short and thin. High-efficiency amplifiers, in contrast, favor much longer crystals. One workaround is to connect several short crystals in series, an approach already explored in research. Whatever the choice, the timing between the pump and signal pulses must stay synchronized.

New multipass concept

The team addresses this trade-off with a multipass strategy. Rather than relying on one long crystal or stacking many short ones, they run the light repeatedly through a single short crystal inside an optical parametric amplifier. After each pass, the separated pulses are carefully realigned to maintain synchronization. The result is a system that produces pulses shorter than 50 femtoseconds, takes up only a few square centimeters, and uses just five components.

"Our multipass system demonstrates that extremely high efficiencies need not to come at the expense of bandwidth," explains Steinle. "It can replace large and expensive laser systems with high power losses, which were previously required to amplify ultrashort pulses." The design can also be tuned for wavelengths beyond the infrared and adapted to different crystals and pulse durations. Building on this concept, the researchers aim to create small, lightweight, compact, portable, and tunable lasers that can set wavelengths with precision. Likely use cases include medicine, analytical techniques, gas sensing, and environmental monitoring.

Financial support came from the Federal Ministry of Research, Technology and Space (BMFTR) through the KMU-Innovativ program, the Federal Ministry for Economic Affairs and Energy (BMWE), the Baden-Wuerttemberg Ministry of Science, Research and the Arts, the German Research Foundation (DFG), the Carl Zeiss Foundation, the Baden-Wuerttemberg Foundation, the Center for Integrated Quantum Science and Technology (IQST), and the Innovation Campus Mobility of the Future (ICM). The work was carried out by the 4th Physics Institute of the University of Stuttgart in collaboration with Stuttgart Instruments GmbH under the MIRESWEEP project (a novel, cost-effective tunable mid-infrared laser source for analytical applications).

Source: ScienceDaily

Related Recommendations
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    See translation
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    See translation
  • A major investment! Lumentum completes acquisition of research and development site in Carswell, UK

    Lumentum, a leading designer and manufacturer of innovative optical and photonic products, has announced that it has completed the acquisition of a site in Caswell, UK.Lumentum revealed that it has made significant investments in the site over the past two years and is currently undergoing development upgrades for its state-of-the-art cleanrooms and laboratories to continue to support the developm...

    2023-09-13
    See translation
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    See translation
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation