English

Dr. Kenichi Iga wins awards in the field of lasers

55
2025-11-07 11:12:24
See translation

Dr. Kenichi Iga (85), Professor Emeritus at Tokyo University of Science, has been awarded the 2025 Honda Prize. The Honda Foundation announced that the award recognizes his outstanding contributions in proposing and advancing the commercialization of “surface-emitting lasers.” This type of semiconductor laser, characterized by its miniaturization, high-density integration, and low power consumption, has significantly propelled the development of optoelectronic technologies in the fields of communications and sensors.

A semiconductor laser is a device that emits laser light by passing an electric current through a semiconductor. An n-type semiconductor and a p-type semiconductor form a pair, and at their junction, excess electrons from the n-type move to areas where the p-type lacks electrons. At this moment, the electron energy converts into light. This light is reflected and amplified by two mirrors at the junction and is emitted as laser light.

In the mid-1970s, with the advent of optical fiber, development of semiconductor lasers accelerated toward the practical application of optical communications. The initial "edge-emitting laser" emitted light parallel to the semiconductor substrate surface and had drawbacks including complex manufacturing processes and wavelength instability.

In 1977, when Dr. Iga was an Assistant Professor at Tokyo Institute of Technology (now Institute of Science Tokyo), he conceived the surface-emitting laser, which emits light perpendicular to the substrate surface, inspired by the idea of "standing up what had been lying down." It offers wavelength stability, compact size, high-density integration capability, ease of mass production, low power consumption, and good compatibility with optical fibers. In 1978, he presented the concept and fabrication method at academic conferences and in papers. Despite widespread skepticism about its feasibility, Dr. Iga's research group persevered through trial and error. In 1988, Dr. Fumio Koyama (now Professor Emeritus at Institute of Science Tokyo) achieved the world's first continuous laser emission at room temperature.

 



The surface-emitting laser attracted worldwide attention, and from the late 1990s onward, many companies advanced research and development. It has been adopted for ultra-high-speed, large-capacity communications in data centers and LANs (Local Area Networks), as well as for computer mice, laser printers, and three-dimensional facial recognition in smartphones. "LiDAR," a sensor that uses lasers to detect the distance and shape of objects, has been installed in robot vacuum cleaners and is considered essential for the practical application of autonomous driving. In medicine, it has been put to practical use as the laser for optical coherence tomography (OCT), which images cross-sections of the retina. Dr. James Fujimoto of the United States, who developed OCT technology, received the Honda Prize last year.

The market for surface-emitting lasers is estimated at 4 billion dollars. Related research papers worldwide exceed 60,000, making significant contributions to the development of the optoelectronics field. Dr. Iga served as President of Tokyo Institute of Technology from 2007 to 2012.

The Honda Foundation announced the laureate on the 9th of last month. The award ceremony will be held in Tokyo on November 17, with a prize of 10 million yen.

 



Source: Science Japan

Related Recommendations
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    See translation
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    See translation
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    See translation
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    See translation
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    See translation