English

Laser-induced graphene sensor can diagnose diabetes through breath samples

633
2025-09-08 10:14:27
See translation

In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing.

 



Diagnosing diabetes in a few minutes from just a breath sample


A research team led by Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State University, University Park, PA, has developed a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample.

Their achievement is described in Chemical Engineering Journal.

Previous diagnostic methods often used glucose found in blood or sweat, but the new sensor detects acetone levels in the breath. While everyone’s breath contains acetone as a byproduct of burning fat, acetone levels above a threshold of about 1.8 parts per million indicate diabetes.

“While we have sensors that can detect glucose in sweat, these require that we induce sweat through exercise, chemicals or a sauna, which are not always practical or convenient,” said Cheng. “This sensor only requires that the subject exhales into a bag, then dip the sensor in and wait a few minutes for results.”

Cheng said there have been other breath analysis sensors, but they detected biomarkers that required lab analysis. Acetone can be detected and read on-site, making the new sensors cost-effective and convenient.

Laser-induced graphene

In addition to using acetone as the biomarker, Cheng said another novelty of the sensor came down to design and materials — primarily laser-induced graphene. To create this material, a CO2 laser is used to burn the carbon-containing materials, such as the polyimide film in this work, to create patterned, porous graphene with large defects desirable for sensing.

“This is similar to toasting bread to carbon black if toasted too long,” Cheng said. “By tuning the laser parameters such as power and speed, we can toast polyimide into few-layered, porous graphene form.”

The researchers used laser-induced graphene because it is highly porous, meaning it lets gas through. This quality leads to a greater chance of capturing the gas molecule, since breath exhalation contains a relatively high concentration of moisture. However, by itself, the laser-induced graphene was not selective enough of acetone over other gases and needed to be combined with zinc oxide.

“A junction formed between these two materials that allowed for greater selective detection of acetone as opposed to other molecules,” Cheng said.

Another challenge was that the sensor surface could also absorb water molecules, and because breath is humid, the water molecules could compete with the target acetone molecule. To address this, the researchers introduced a selective membrane that could block water but allow the acetone to permeate.

Cheng said that right now, the method requires a subject to breathe directly into a bag to avoid interference from factors such as airflow in the ambient environment. The next step is to improve the sensor so that it can be used directly under the nose or attached to the inside of a mask. He also plans to investigate how an acetone-detecting breath sensor could be used to optimize health initiatives for individuals.

“If we could better understand how acetone levels in the breath change with diet and exercise, in the same way we see fluctuations in glucose levels depending on when and what a person eats, it would be a very exciting opportunity to use this for health applications beyond diagnosing diabetes,” he said.

Source: optics.org

Related Recommendations
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    See translation
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    See translation
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    See translation
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    See translation