English

San’an and Inari acquire Lumileds for $239 million

839
2025-08-13 14:32:47
See translation

San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.
The all-cash deal is valued at US$239 million, according to market intelligence company TrendForce. TrendForce’s LED industry demand and supply database noted that, “Lumileds ranks among the world’s top seven LED packaging companies.

The acquisition is set to help San’an gain entry into the international cross-licensing patent alliance led by Nichia, ams Osram, Cree LED, Lumileds, and Toyoda Gosei, while also leveraging Lumileds’ two-decade legacy in the global market.

 

 

Lumileds develops LED technology for automotive, display, and other markets


“This transaction is the next step of our ongoing transformation. As the LED industry evolves and continues to mature, I am confident that Lumileds International will continue to be successful and accelerate its growth under the new ownership,” said Steve Barlow, CEO of Lumileds International. The transaction is expected to close by the first quarter of 2026.

Lumileds describes itself as “a leader in LED technology, innovation, and solutions for the automotive, display, illumination, mobile, and other markets where light sources are essential. Our approximately 3,300 employees operate in over 15 countries to partner with our customers to deliver solutions for lighting, safety, and well-being.”

San’an Optoelectronics is listed on the Shanghai Stock Exchange with annual revenue of RMB16.1 billion (approx. USD 2.2 billion) for the financial year ended 31 December 2024 and a market capitalization of approximately RMB 60 billion (USD 8.4 billion) as of August 1st.

Inari Amertron Berhad is listed on the Malaysian Stock Exchange with annual revenue of RM1.5 billion (approx. USD 350 million) for the financial year ended 30 June 2024 and a market capitalization of approximately RM 7.8 billion (USD1.8 billion).

 


Tokyo Inst. of Science achieves ‘lowest’ operating voltage for white OLEDs


A new white organic light-emitting diode operates at under 1.5 volts, report researchers from Institute of Japan. By using triplet–triplet annihilation to generate blue light at low voltage and adding in yellow and sky-blue dopants, the research team achieved efficient white emission.
Although OLEDs offer high visual quality, they still suffer from a key limitation—white OLEDs have relatively high-power consumption—that has hindered their widespread adoption in smaller, battery-operated devices.

This power demand stems from the high voltage needed to produce white light. Current white OLED technology typically requires more than 2.5 V to operate, which is the voltage required to produce the blue light from which the white light is partially derived.

White OLEDs with extremely low turn-on voltage at 1.5 V

Fortunately, in a recent study, a research team led by Associate Professor Seiichiro Izawa from the Materials and Structures Laboratory at Institute of Science Tokyo, Japan, has achieved a breakthrough in white OLED technology. Their paper, which was published in the Journal of Materials Chemistry C, reports the development of a white organic electroluminescent device that operates at an unprecedentedly low voltage.

The team created low-voltage blue OLEDs using an upconversion process based on triplet–triplet annihilation (TTA). The strategy involves using a low voltage to drive the movement of negative and positive charges within a layered organic semiconductor device. When these charges meet and recombine, they produce excited “triplet states”. These can destroy each other through TTA to yield a higher-energy singlet state, which produces blue light as it decays.

The researchers introduced two differently colored dopants into the emissive layer of the semiconductor device to achieve the desired white light: a sky-blue dopant (Tbpe) and a yellow dopant (rubrene). The new white OLED boasts a turn-on voltage of less than 1.5 V, meaning that the device can be directly operated by a single 1.5-volt dry battery. “To the best of our knowledge, this is the lowest operating voltage reported to date for white OLEDs,” said Izawa.

Source: optics.org

Related Recommendations
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    See translation
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    See translation
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    See translation
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    See translation
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    See translation