English

IPG introduces a new dual-beam laser with the highest single-mode core power

339
2023-09-14 14:20:41
See translation

From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.

New laser technology pushes the limits of battery welding speed

IPG will continue to expand its dual-beam fiber laser offering with the introduction of a new tunable Mode Beam (AMB) laser source. This laser source enables a 3kW single-mode laser beam in the core, an industry first, and the increase in single-mode power provides unprecedented speed and productivity gains for battery welding, with splash-free welding speeds up to 2 times faster than low-core power.

This AMB dual-beam laser uses a secondary ring beam working in series with a single-mode core to stabilize the weld pool and virtually eliminate weld defects such as spatter, cracking and porosity. IPG AMB lasers can be configured with a wide range of beam parameters to provide optimized performance in a variety of welding applications.

Battery manufacturers generally prefer single-mode fiber lasers for precision welding applications because of their ability to concentrate power into extremely small spot sizes on the part. The resulting high energy density makes it easy to overcome the high reflectivity of metals such as copper and aluminum, while achieving the desired welding penetration at extremely fast speeds and reducing the heat affected zone (HAZ).

"IPG is more than just a laser company," said Trevor Ness, IPG's senior vice president of Global Sales and Strategic Business Development, "IPG's lasers and laser systems are designed to provide solutions that directly address real-world needs such as battery welding, and integrate patented technologies such as real-time laser welding measurements to provide 100 percent welding quality assurance." "

Automated laser systems designed for high-volume battery production

IPG will bring two live demonstrations of automated turnkey laser welding systems designed specifically for battery welding applications.

EV-Cube™ Automatic Battery Laser Welding System: gantry based laser system designed to meet the demanding speed and precision requirements of battery module welding. Using proprietary laser welding programming, EV-Cube can be configured to provide welding speeds of up to 10+ cylindrical units per second while maintaining an accuracy of 25 μm.

The LaserCell™ Battery Welding System is a robotic laser system that provides the flexibility and coverage required for large or complex battery modules. The system uses a 6-axis robot that can be configured to weld prismatic, cylindrical and pocket modules while maintaining high yields and short cycle times.

These systems are equipped with IPG lasers, process heads, robot and tool configurations, part handling and loading, integrated software, and IPG programming and process development. These systems can be equipped with real-time laser welding measurements that directly measure each weld using patented IPG technology, ensuring that only welds that meet the required specifications make it to the final product stage.

About IPG Photonics

IPG Photonics is a leader in high-power fiber lasers and amplifiers for materials processing and a variety of other applications. The company's mission is to develop innovative laser solutions that make the world a better place.

Compared to other types of laser and non-laser tools, IPG accomplifies this task at a lower total cost of ownership by providing superior performance, reliability and availability, enabling end users to increase productivity and reduce costs. Headquartered in Marlborough, Massachusetts, USA, IPG has more than 30 facilities worldwide.

Source: OFweek Laser network

Related Recommendations
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    See translation
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    See translation
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    See translation
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    See translation
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    See translation