English

NKT Photonics utilizes fiber lasers to achieve deep space communication links

540
2025-07-21 10:31:02
See translation

On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.
NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-rate communication across vast interplanetary distances.”


ESA’s multi-beam high-power fiber laser transmission system


The link is the result of collaboration between ESA, NASA/JPL, and a consortium of including NKT Photonics. The major technical challenges that were overcome have created a laser with enough power to be detected at extremely large distances, a pointing system with enough precision to aim accurately at the spacecraft an equally precise receiver system sensitive enough to detect the extremely faint return signals.

In collaboration with Swiss General Atomics Synopta, NKT Photonics supplied the multi-beam high-power fiber laser system, and the beam transmit system. The laser system emits a narrow-linewidth, modulated signal so that the distant spacecraft can precisely locate the ground station and lock onto it, establishing an optical link for high-speed data downlink.


ESA’s Ultima project


Located at the Kryoneri Observatory in Greece, the transmitter generates a multi-kilowatt beam capable of detection by the DSOC flight transceiver onboard the Psyche spacecraft, currently 265 million km distant, en route to the metal-rich 16 Psyche asteroid.

Laser system
The core of the laser system is based on NKT Photonics’ Koheras single-frequency fiber laser platform. The base for the configuration is an Acoustik line card sub-rack housing the Basik Y10 seed laser, a Boostik pre-amplifier as well as both AOM and EOM line cards used for spectral pre-conditioning and high frequency amplitude modulation. A splitter sends the signal to the five Boostik UHP high power amplifiers to bring the power up to the kW level needed to reach the spacecraft.

The bespoke amplifiers are based on NKT Photonics’ core fiber amplifier technology, also used in their directed energy activities but modified to enable high speed power modulation from 0 to 2 kW in less than 10 µs. Finally, a bespoke timing module line card provides all the timing and synchronization waveforms for the various beacon and data-uplink scenarios including the modem interface.

The beam transmit system’s precision allows it to point with arcsecond precision to the spacecraft, enabling both a beacon for accurate downlink and the potential to uplink data, providing a glimpse into the future of deep space communication.

Mike Yarrow, Senior Engineering Manager at NKT Photonics, said, “Our expertise in fiber laser technology has allowed us to contribute to a system that pushes the boundaries of what’s possible in free space optical communications. This project not only showcases our ability to deliver unprecedented power and precision to meet our customers’ stringent requirements but also reinforces our commitment to forging successful collaborations and advancing knowledge to benefit society as a whole.”

Source: optics.org

Related Recommendations
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    See translation
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    See translation
  • NLIGHT announces financial performance for the fourth quarter and full year of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the fourth quarter and full year of 2024.financial summaryTotal revenue: 198.5 million US dollars, a decrease from 209.9 million US dollars in 2023, due to a decline in sales in the laser product department.Operating loss: A loss of $65.6 million, compared to a loss of $46.8 mill...

    03-04
    See translation
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    See translation
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    See translation