English

Oxford University develops technology for capturing strong laser pulses in one go

358
2025-07-07 11:12:47
See translation

Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.
The Oxford announcement states: “This would have transformative applications in many areas, including research into new forms of physics and realising the extreme intensities required for fusion energy research. The achievement is described in Nature Photonics.

 



Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation of an electric field, making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging. Until now, existing techniques typically required hundreds of laser shots to assemble a complete picture, limiting reesrachers’ ability to capture the dynamic nature of these extreme light pulses.

RAVEN: single-shot diagnosis

The new study, jointly led by researchers in the University of Oxford’s Department of Physics and the Ludwig-Maximilian University of Munich (LMU), Germany, describes a novel single-shot diagnostic technique, named RAVEN (Real-time Acquisition of Vectorial Electromagnetic Near-fields). This allows scientists to measure the full shape, timing, and alignment of individual ultra-intense laser pulses with high precision.

Having a complete picture of a laser pulse’s behaviour could revolutionize performance gains in many areas. For example, it could enable scientists to fine-tune laser systems in real-time and bridge the gap between experimental reality and theoretical models, providing better data for computer models and AI-powered simulations.

Splitting beam into two
The method works by splitting the laser beam into two parts. One of these is used to measure how the laser’s wavelength changes over time, while the other part passes through a birefringent material which separates light with different polarisation states. A microlens array then records how the laser pulse’s wavefront, or its shape and direction, is structured.

Lead researcher Sunny Howard, PhD researcher at Oxford and visiting scientist to LMU, said, “Our approach enables the complete capture of an ultra-intense laser pulse in real-time, including its polarization state and complex internal structure. This not only provides unprecedented insights into laser-matter interactions but also paves the way for optimizing high-power laser systems in a way that was previously impossible.”

The technique was successfully tested on the ATLAS-3000 petawatt-class laser in Germany, where it revealed small distortions and wave shifts in the laser pulse that were previously impossible to measure in real-time, allowing the research team to fine-tune the instrument. These distortions, known as spatio-temporal couplings, can significantly affect the performance of high-intensity laser experiments.

By providing real-time feedback, RAVEN allows for immediate adjustments, improving the accuracy and efficiency of experiments in plasma physics, particle acceleration, and high-energy density science. It also results in significant time savings, since multiple shots are not required to fully characterise the laser pulse’s properties.

The technique also provides a potential new route to realise inertial fusion energy devices in the laboratory – a key gateway step towards generating fusion energy at a scale sufficient to power societies. Inertial fusion energy devices use ultra-intense laser pulses to generate highly energetic particles within a plasma, which then propagate into the fusion fuel.


Co-author Professor Peter Norreys, also from Oxford’s Department of Physics, said, “Where most existing methods would require hundreds of shots, RAVEN achieves a complete spatio-temporal characterisation of a laser pulse in just one. This not only provides a powerful new tool for laser diagnostics but also has the potential to accelerate progress across a wide range of ultra-intense laser applications, promising to push the boundaries of laser science and technology.”

Looking ahead, the researchers hope to expand the use of RAVEN to a broader range of laser facilities and explore its potential in optimising inertial fusion energy research, laser-driven particle accelerators and high-field quantum electrodynamics experiments.

Source: optics.org

Related Recommendations
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    See translation
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    See translation
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    See translation
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    See translation
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    See translation