English

New machine learning algorithm accurately decodes molecular optical 'fingerprints'

1413
2025-05-09 10:57:00
See translation

Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant paper was published in the latest issue of the journal Nano.

The research team stated that the core breakthrough of this technology lies in teaching computers to recognize unique "fingerprints" generated by the interaction between molecules or materials and light. With the help of this technology, in the future, doctors may be able to capture early signals of Alzheimer's disease by simply shining light on a drop of liquid or tissue sample.

PSE-LR not only has the ability to distinguish autumn hair, but also has the interpretability of being open and honest. Unlike other "black box" machine learning models, it can generate clear "feature importance maps" that accurately highlight key spectral segments, making diagnostic results reliable, interpretable, traceable, and easy to verify.

Compared with other machine learning models, PSE-LR shows superior performance, especially in identifying subtle or overlapping spectral features. In addition, in the subsequent series of validation experiments, the performance of the algorithm was also commendable, including the successful detection of the trace presence of COVID-19 spike protein in the liquid, the accurate identification of neuroprotective components in mouse brain tissue, the effective differentiation of microscopic spectral differences in Alzheimer's disease samples, and the identification of the unique optical characteristics of two-dimensional semiconductor materials.

Source: Opticsky

Related Recommendations
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    See translation
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    See translation
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    See translation
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    See translation
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    See translation