English

New type of "dynamic static dual sensing" charge coupled phototransistor

1430
2025-04-17 18:24:30
See translation

With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection and grayscale image acquisition. However, each pixel usually requires dozens of transistors and circuit components, and the structure is complex, the power consumption is high, the integration difficulty is high, and it also faces engineering challenges such as high-speed clock synchronization.

In response to the above issues, the team led by Sun Dongming, a researcher at the Institute of Metals, Chinese Academy of Sciences, has proposed a new "dynamic static dual sensing" charge coupled phototransistor. This type of transistor only requires one device unit to synchronously achieve dynamic and static image information acquisition. The related research results, titled A charge coupled phototransistor enabling synchronous dynamic and static image detection, were published in Advanced Materials.

This study designed a gate structure of "upper and lower dual photosensitive capacitors". The upper gate shields electrons through a thicker dielectric layer, causing stable current changes in the device for capturing grayscale images; The lower gate uses a thinner dielectric layer to allow electrons to tunnel and form transient current pulses, specifically designed to capture dynamic events. Through this unique charge coupled grating mechanism, independent response of static images and dynamic events has been achieved within a transistor. Tests have shown that the dynamic range of the device reaches 120 dB, the response speed is as fast as 15 μ s, and the power consumption is only 10 pW, which is only one thousandth of traditional dynamic and active pixel sensor devices.

The above achievements have reduced power consumption, facilitated large-scale integration, and fundamentally solved the problem of high-speed clock synchronization. At the same time, this invention can be made using two-dimensional materials or one-dimensional carbon nanotubes, with good material universality.

 



Structure and characterization of charge coupled phototransistors


The research work was supported by the National Natural Science Foundation of China, the National Key Research and Development Program, and related projects of the Chinese Academy of Sciences.

Source: opticsky

Related Recommendations
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    See translation
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    See translation
  • The 20th Wuhan Optoelectronics Expo 2025 to Open Grandly

    From May 15 to 17, 2025, the 20th Wuhan Optoelectronics Expo will be held grandly at the China Optics Valley Convention and Exhibition Center in Wuhan. With the theme "Light Connects Everything, Intelligence Leads the Future," this year's expo will focus on six major fields: laser technology and applications, optics and precision optics, information communication and semiconductors, automotive opt...

    03-14
    See translation
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    See translation
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    See translation