日本語

NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

856
2024-05-13 14:01:54
翻訳を見る

NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian applications. The award of this contract is based on NUBURU's announcement in August 2023 of the successful implementation of the first phase of Small Business Innovation Research ("SBIR").

NUBURU's blue power launch technology is a revolutionary rethinking of the power grid for unique lunar and Martian environments, eliminating the need to transport heavy copper or aluminum wires that are economically and logistics impractical. The blue power transmission technology method can dynamically allocate power to mobile roaming vehicles, temporary or permanent sites, and even remote habitats. NUBURU's blue laser architecture enables low size, low weight, and low power consumption (SWaP) design, clear visibility for navigation, efficient direct diode technology, and advanced direct bandgap solar cell technology for high electrical efficiency. This technological solution is directly aligned with the mission objectives of NASA's Artemis program, which aims to permanently return humans to the moon.

In the initial phase of the project, NUBURU demonstrated the scientific, technological, and commercial feasibility of its technology. In the second phase of the plan, NUBURU's goal is to expand the power, range, and performance of blue laser power emission technology. The plan will demonstrate that the technology can provide hundreds of watts of power within a kilometer level range. In addition, NUBURU will adopt the next generation technology to improve its high brightness laser source, which can extend the technology range to tens of kilometers on the lunar surface.
"The second NASA contract demonstrates the innovation of our blue power launch technology, which has the potential to completely change the power management challenges faced by NASA, other space operators, and many commercial enterprises today," said Brian Knaley, CEO and CFO of the company. "Our upcoming innovation, supported by NUBURU's state-of-the-art blue laser technology, will significantly reduce the size and weight of necessary equipment to meet daily task requirements."

Mr. Kenali continued, "In addition to lunar applications, blue laser power launch also has ground applications, including remote power solutions, disaster relief, and controversial logistics for the Ministry of Defense. NUBURU's unique high brightness technology has more applications in the industrial, medical, and defense markets, which benefit from SBIR program funding as well as large markets such as electric vehicles, consumer electronics, aerospace, healthcare, defense, energy, and industrial applications."

NASA's SBIR program funds research, development, and demonstration of innovative technologies with successful commercialization potential. The SBIR program aims to bring these technologies to market through a three-stage process, ultimately achieving commercialization and deployment. The second phase of work will be an important step towards validating blue laser power emission technology on a scale crucial to commercial success.

Source: Laser Net

関連のおすすめ
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    翻訳を見る
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    翻訳を見る
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    翻訳を見る
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    翻訳を見る
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    翻訳を見る