日本語

Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

220
2024-04-09 15:58:58
翻訳を見る

Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated with curved objects and moving entity systems to achieve intrinsic flexibility and high sensitivity in skin like X-ray detectors.

However, the stability and image resolution of X-ray detectors based on organic polymer semiconductor materials under irradiation are poor, which limits the application of such devices. Liu Yunqi, an academician of the CAS Member, and Guo Yunlong, a researcher in the Key Laboratory of the Institute of Mechanical and Solid State of the Chemical Research Institute, have made a series of progress in high-performance intrinsically stretchable organic optoelectronic materials and devices.

Recently, in response to the reported issues of high operating voltage, poor stability, and low integration of stretchable organic optoelectronic devices, the team has proposed a new strategy of using removable interfaces to assist in the preparation of high-density intrinsic stretchable organic transistor arrays. This strategy introduces a lithium fluoride sacrificial layer on patterned photoresist to construct a detachable interface, achieving scalable integration of high-resolution intrinsic stretchable electrodes. The short channel stretchable organic transistor prepared in this study has low operating voltage, high optoelectronic performance, and excellent stability. The stretchable image sensor based on this short channel transistor exhibits a resolution of up to 10 lp mm-1 and achieves images of millions of pixels. This strategy provides a simple and universal optoelectronic integration platform. The relevant results were published in Nature Communications.

In addition, the team published a review paper on "Emerging Materials and Transistors for Integrated Circuits" in the National Science Review, summarizing the molecular design of high mobility semiconductor materials and functional fusion of mechanical, optical, and thermal properties. They analyzed and looked forward to the research progress and direction of functionalized high mobility polymer semiconductors.
The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

A detachable interface strategy for achieving stable, low-voltage stretchable organic transistors and high-resolution X-ray imaging


Multi functional integrated high mobility organic polymer semiconductor molecular materials

Source: Institute of Chemistry

関連のおすすめ
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    翻訳を見る
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    翻訳を見る
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    翻訳を見る
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    翻訳を見る
  • Another blockbuster acquisition! The two equipment makers announced a merger to focus on laser construction

    Recently, RDO equipment announced the completion of its acquisition of Rocky Mountain Transit&laser, expanding the construction technology solutions, services and expertise of John Deere construction and Wirtgen group in eight stores in Idaho, Wyoming and Utah, RDO acquired the stores in December 2023.Adam Gilbertson, senior vice president of field technology and innovation at RDO, said the ac...

    2024-05-31
    翻訳を見る