日本語

Launching the world's strongest laser at a cost of 320 million euros

204
2024-04-03 18:05:29
翻訳を見る

   Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fields from medicine to basic physics and space.

   The high-tech center to which this laser belongs is located in Romania, mainly funded by the European Union, with a cost of 320 million euros, utilizing the invention of French scientists such as Gerald Muru.

   Scientists have been committed to manufacturing more powerful lasers. In the mid-1980s, the Muru team invented Chirped Pulse Amplification (CPA) technology, which can increase the power of lasers while maintaining their intensity. Its working principle is to stretch an ultra short laser pulse in time, amplify it, and then squeeze it together again to create the shortest and strongest laser pulse to date.

   Mulu was awarded the 2018 Nobel Prize in Physics for developing a method for producing high-intensity, ultra short light pulses. This technology is expected to be widely applied in fields such as nuclear physics and particle physics, medicine, etc. In the medical field, this technology has promoted the development of cataract and refractive surgery.

   Muru pointed out that they will start with a tiny glowing "seed" with minimal energy, which will be magnified millions of times. They will use these ultra-high voltage pulses to generate more compact and cheaper particle accelerators to destroy cancer cells. Other possible applications include processing nuclear waste by reducing its radioactive duration, cleaning up accumulated debris in space, and so on.

関連のおすすめ
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    翻訳を見る
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    翻訳を見る
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    翻訳を見る
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    翻訳を見る
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    翻訳を見る