日本語

The research team has solved decades long challenges in the field of microscopy

840
2024-04-27 14:34:15
翻訳を見る

When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.

This interference can cause the measured sample depth to be smaller than the actual depth. Therefore, the sample appears to have flattened.
"This problem has a long history, and since the 1980s, some theories have been proposed to determine a correction coefficient for determining depth. However, all of these theories assume that this coefficient is constant and independent of sample depth. Associate Professor Jacob Hoogenboom of Delft University of Technology explained that although later Nobel laureate Stefan Hell pointed out in the 1990s that this proportion may be related to depth, this situation still occurred.".

Sergey Loginov, a former postdoctoral fellow at Delft University of Technology, has now demonstrated through calculations and mathematical models that samples do exhibit stronger flattening near the lens than away from it. Doctoral student Daan Boltje and postdoctoral researcher Ernest van der Wee subsequently confirmed in the laboratory that the correction factor is related to depth.

This research result is published in the journal Optica.
The last author, Ernest Van der Wee, said, "We have compiled the results into a network tool and software that is provided with the article. With these tools, anyone can determine precise correction factors for their experiments.".

Researcher Daan Boltje said, "Thanks in part to our computational tools, we can now very accurately cut out proteins and their surrounding environment from biological systems, and determine their structure using an electron microscope. This type of microscopic examination is very complex, time-consuming, and incredibly expensive. Therefore, ensuring that the correct structure is observed is crucial."

Researcher Daan Boltje said, "With our more precise depth measurements, we only need to spend less time and money on samples that miss biological targets. Ultimately, we can study more relevant proteins and biological structures. Determining the precise structure of proteins in biological systems is crucial for understanding and ultimately preventing abnormalities and diseases."“

In the provided network tools, you can fill in the relevant details of the experiment, such as refractive index, aperture angle of the objective lens, and wavelength of the light used. Then, the tool will display a depth related scaling factor curve. You can also export this data for your own use. In addition, you can also combine the results with the results of existing theories to draw.

Source: Physicist Organization Network

関連のおすすめ
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    翻訳を見る
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    翻訳を見る
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    翻訳を見る
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    翻訳を見る
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    翻訳を見る