日本語

Researchers use desktop laser systems to generate ultrafast electrons

348
2024-03-14 14:50:56
翻訳を見る

In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.

Traditionally, laser based particle accelerators require expensive lasers and are included in large national facilities. Such a complex setup can accelerate electrons to megaelectron volts of energy. However, can a simpler laser, which costs only a small part of the current lasers, be used to design similar particle acceleration schemes?

In an exciting leap, scientists from the Batata Institute in Hyderabad have designed an elegant solution to successfully generate MeV at a temperature that is only a small fraction of what was previously considered necessary laser intensity.
The research results are published in the journal Communication Physics.

This technology achieves two laser pulses; Firstly, a small controlled explosion is generated in the droplet, followed by a second pulse that accelerates the electrons to megaelectron volt energy. What's even more exciting is that they achieved this with 100 times less laser than what was previously considered necessary, making it easier to obtain and more versatile in future research. The impact of this discovery may be enormous, as it can generate high-energy electron beams for applications such as non-destructive testing, imaging, tomography, and microscopy, and may have an impact on materials science and bioscience.

The device developed by TIFRH researchers uses a millijoule level laser, emitting at a rate of 1000 pulses per second, with an ultra short pulse of 25 fs, for dynamically chiseling out a diameter of 15 μ Microdroplets of m. This dynamic target shaping involves the collaborative work of two laser pulses. The first pulse forms a concave surface in the droplet, while the second pulse drives an electrostatic plasma wave, pushing electrons towards MeV energy.

Electrostatic waves are oscillations in plasma, much like mechanical disturbances generated in a pool when passing through a stone. Here, the laser generates disturbances in the electronic ocean and generates an "electronic tsunami". The tsunami ruptures and produces high-energy electrons, just like the splashing of waves on the coast. This process produces not one, but two electron beams, each with different temperature components: 200 keV and 1 MeV.

This innovation generates a directed electron beam of over 4 MeV through a desktop suitable laser, making it a game changer for time-resolved and microscopic research across different scientific fields.

Source: Laser Net

関連のおすすめ
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    翻訳を見る
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    翻訳を見る
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    翻訳を見る
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    翻訳を見る
  • Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

    Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tou...

    2023-09-26
    翻訳を見る