日本語

Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

734
2023-10-12 14:15:49
翻訳を見る

Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used in this collaboration.

In the past decade, the prospect of carbon free energy has rapidly developed, promoting the continuous progress of Tokamak equipment and also driving the growth of demand for high-temperature superconducting tapes. High temperature superconducting magnetic tape, as a key technology for manufacturing super strong electromagnets, is mainly used in magnetic confinement fusion reactors to limit and control plasma. It is worth noting that Faraday Factory Japan LLC, a Japanese subsidiary of Faraday 1867 Holdings, has become a leading global manufacturer of high-temperature superconducting (HTS) tapes.

Coherent's LEAP excimer laser is an industrial standard pulsed laser deposition product, which has greatly promoted the manufacturing process of high-temperature superconducting tapes.

According to Tokamak Energy, a fusion startup in the UK, magnetic fields play a role in limiting and controlling charged plasma in Tokamak devices. These strong magnetic fields can heat the plasma to temperatures above 100 million degrees Celsius - the threshold required for fusion to become a commercially viable energy source. Afterwards, the powerful magnets in the spherical tokamak can achieve more compact confinement, increase plasma density and power, while avoiding the expensive need for liquid helium cooling.

By transmitting a large current around the array of electromagnet coils surrounding the plasma, a powerful magnetic field can be generated. These magnets are made by wrapping high-temperature superconducting tapes that Tokamak Energy Company calls "breakthrough".

Processing functional coatings
Faraday Factory Japan LLC, a subsidiary of Faraday 1867 Holdings, has been producing high-temperature superconducting tapes since 2012. The above letter of intent mentions the strategy of the Japanese factory to meet global demand for HTS tapes. Coherent stated that the demand for this type of tape is expected to increase tenfold from now to 2027.

The Japanese company uses methods such as ion beam assisted deposition (IBAD), pulse laser deposition (PLD), silver magnetron sputtering, and copper electrochemical plating, which require several manufacturing steps to manufacture this type of magnetic tape. Among them, excimer based pulsed laser deposition (PLD) is the only validated batch production method that can manufacture rare earth barium copper oxide (REBCO) thin films with the required quality for multi-layer HTS strips.

The Faraday factory described on its website: "Pulse Laser Deposition (PLD) It is a very powerful tool that can produce high-quality functional coatings. The deposition process is generated by a plume generated by a laser beam hitting a target on a metal strip with a buffer layer at high temperature. HTS compounds are a complex oxide material, and the PLD method plays an important role in producing high-temperature superconducting layers with strict control over composition, thickness, and microstructure
It is said that the letter of intent signed between the company and Coherent outlines a strategy to enhance high-temperature superconducting manufacturing capabilities using the company's "LEAP" laser.

Coherent LEAP excimer lasers are an industry standard for programmable logic devices and can be used to manufacture HTS tapes. LEAP lasers are based on argon fluoride (ArF), krypton fluoride (KrF), and xenon chloride (XeCl) sources, with emission wavelengths of 193 nm, 248 nm, and 308 nm, respectively, and output power of up to 300W. They have been used in a series of industrial applications, such as laser elevators produced by organic LED and MicroLED displays.

Beyond Fusion
Kai Schmidt, Senior Vice President of the Excimer Laser Business Unit of Coherent Company, said, "We know that countries participating in the nuclear fusion energy competition are working hard to accelerate the construction of the high-temperature superconducting tape supply chain, with an annual growth rate of thousands of kilometers to maintain the rapid development of fusion technology.

Sergey Lee, the representative director of the Faraday Japan factory, added: We have been cooperating with Faraday 1867 for over a decade, and our lasers are eager to play an important role in the production improvement phase of HTS tapes. The application fields of HTS tapes are not limited to fusion reactors - they include lossless energy transfer, zero carbon aviation and container ships, helium free nuclear magnetic resonance systems, advanced spacecraft propulsion systems, and so on. These applications are driving the annual growth rate of the HTS tape market to reach double digits, therefore investing The urgency of investing in HTS tape manufacturing capabilities is evident.

HTS magnetic tape is one of the key technologies for achieving magnetic confinement fusion reactors like Tokamak. Compared to previous technologies, Tokamak has a simpler design, more compact structure, and lower operating costs. HTS tapes can operate at temperatures of tens of Kelvin, eliminating the need for expensive cooling systems based on unsustainable liquid helium technology. The magnetic confinement fusion reactor is expected to eventually generate gigawatts of carbon free electricity, with a net profit of over 10%, and therefore may play an important role in the global transition to green energy.

Source: Sohu

関連のおすすめ
  • The First Operation of Two Color Mode in Infrared Free Electron Laser

    The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.There are over a dozen free electron lasers worldwide, with ...

    2024-02-18
    翻訳を見る
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    翻訳を見る
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    翻訳を見る
  • Marilli won the "2024 CES Innovation Award": Laser and optical taillights produce 1mm of light

    Marelli is a company specialized in the field of automotive lighting, which has won the prestigious "2024 CES Innovation Award Winner" for its revolutionary red laser and fiber optic taillight technology. This innovative solution, showcased at the 2024 Consumer Electronics Show, for the first time combines the functionality of red laser with taillights, opening up a new perspective for car design....

    2024-01-16
    翻訳を見る
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    翻訳を見る