日本語

ABB will add optical sensors to four greenhouse gas monitoring satellites

396
2023-12-06 14:03:33
翻訳を見る

ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.

These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas leaks in space. ABB has built payloads (instruments carried on the satellites) for the emission monitoring of 10 greenhouse gas satellites launched into space.

Earlier this year, GHGSat reported that due to the excellent performance of sensors, their existing satellite methane emission measurement capabilities have doubled. This enables GHGSat to accelerate the scale of its monitoring services, helping industries such as oil and gas, power generation, and mining understand and reduce greenhouse gas emissions.

Marc Corriveau, Global Operations Head of ABB Measurement and Analysis Business Line Analysis, stated: "The new contract demonstrates GHGSat's confidence in ABB's manufacturing capabilities, as ABB has the ability to build complex, high-performance optical payloads for hyperspectral Earth observations. This year, we will double our manufacturing infrastructure dedicated to space projects so that we can better serve the thriving private space sector. As we expand into other Earth observation missions, we strive to contribute to the success of our existing clients."

GHGSat CEO Stacphane Germain said, "Our collaboration began in 2018, showcasing ABB's technical expertise and manufacturing capabilities." This experience has enhanced our confidence in ABB's support for GHGSat's ability to expand in building proprietary high-resolution payloads. This partnership is key to significantly reducing greenhouse gas emissions and ultimately having specific impacts in the fight against climate change. "

For over 20 years, ABB has been a leader in the field of orbital gas sensing, starting with the development of the Canadian Space Agency's SCISAT mission payload, which describes the concentrations of over 70 different gas types from cloud tops to outer space, as low as one in a trillion.

ABB has also provided hyperspectral technology to the Japanese GOSAT program, which is the first to conduct global mapping of greenhouse gas sources and sinks in orbit at a regional scale, starting with the first satellite in 2009 and progressing to an improved version in 2018.

Today, ABB has manufactured an enhanced version of GHGSat's proprietary wide-angle Fabry Perot (WAP) interferometer, built upon this tradition, which can track the same infrared fingerprints of greenhouse gases. Through this approach, ABB applies its extensive expertise gained from early highly anticipated government space missions to private sector space, with a focus on civilian operable low latency satellite data.

Source: OFweek

関連のおすすめ
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    翻訳を見る
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    翻訳を見る
  • Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

    Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicis...

    2024-06-04
    翻訳を見る
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    翻訳を見る
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    翻訳を見る