日本語

Bohong has developed a new type of ultrafast laser for material processing

883
2023-08-22 15:03:42
翻訳を見る

Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.

Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.

Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more efficient laser technology to the market.

She has just received a concept validation funding of 150000 euros from the European Research Council (ERC). Her project is called "Ultrafast 2.1 µ m Holmium Lasers for GHz Ablation" ("Giga2u") and is scheduled to run for 18 months.

Faster and more efficient
A standard femtosecond laser emits light pulses with a wavelength of one micrometer and a duration in the range of hundreds of femtoseconds. The energy of each pulse is high, and the system is expensive.

A new type of laser that is faster, more efficient, and at the same time cheaper may become a key technology in the market, "commented Saraceno, head of the Bohong Photonics and Ultrafast Laser Science Group.

Saraceno is currently developing a femtosecond laser with a working wavelength of 2.1 micrometers and a repetition rate of gigahertz.
Compared to shorter wavelength systems currently deployed in industry, this type of light source requires less energy and may be more reliable. They also promised to reduce costs and accelerate production speed. However, so far, these systems have only been used for research applications, such as spectroscopy.

Test market
The "Giga2u" concept validation grant aims to showcase the potential of this technology in industrial applications. This system is mainly used for processing glass and polymers, but it is also used for ablating water-based tissues. The latter may be useful for the future direction of laser surgery applications.

Researchers led by Saraceno hope to develop compact and stable laser prototypes and explore the market potential of this technology. In this process, the group also intends to lay the foundation for establishing a start-up company.

Source: Laser Network

関連のおすすめ
  • The method of reducing the linewidth of laser beam by more than 10000 times

    A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-li...

    07-28
    翻訳を見る
  • Zhongke Yuchen laser welding technology opens up vast space for the welding process of new energy vehicle motors

    The application of laser welding technology in the welding process of new energy vehicle motors is a typical example of Zhongke Yuchen in many welding cases. The main accessories of the automatic laser welding equipment for new energy vehicle motors are imported products, and the welding process is mature and stable.Motor rotorMotor statorLaser welding of motor stator tapThe circumferential wel...

    2023-10-18
    翻訳を見る
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    翻訳を見る
  • SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

    The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.Ruth Shinar d...

    08-06
    翻訳を見る
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    翻訳を見る