日本語

Chinese researchers enhance perovskite lasers by suppressing energy loss

1051
2025-08-25 10:23:09
翻訳を見る

Limiting Auger recombination enables “record” quasi-continuous wave laser output.

For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.
Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that makes them difficult and costly to combine with mainstream silicon technology.

All-inorganic perovskite films have emerged as a promising alternative because they can be produced inexpensively, work with many substrate types, and offer strong optical properties. But one major obstacle has stood in the way: at room temperature, it has been difficult to get perovskite lasers to run in continuous or near-continuous modes without quickly losing their charge carriers to an effect known as Auger recombination.

 


Suppressing Auger recombination for high-performance perovskite VCSELs


A research team at Zhejiang University, Hangzhou, China, has demonstrated a simple method to overcome this problem, leading to record-setting performance for perovskite lasers under near-continuous operation.

As reported in Advanced Photonics, their approach uses a volatile ammonium additive during the annealing process of polycrystalline perovskite films. This additive triggers a “phase reconstruction” that removes unwanted low-dimensional phases, reducing channels that accelerate Auger recombination. The result is a pure 3D structure that better preserves the charge carriers needed for lasing, without adding significant optical loss.

‘Auger recombination’

To understand the improvement, the team analyzed how electrons and holes recombine under different pumping conditions. Auger recombination—where energy from a recombining electron-hole pair is given to another carrier instead of emitted as light—becomes especially problematic when the input light is delivered in longer pulses or continuous beams.

In those situations, carrier injection occurs on a timescale similar to or longer than the Auger lifetime, leading to rapid carrier loss and preventing the build-up of population inversion needed for lasing. By suppressing this process, the researchers were able to sustain the carrier densities required for efficient stimulated emission.


High-performance perovskite lasing via phase-reconstruction Auger suppression. Click for info


With their optimized films, the team built a single-mode vertical-cavity surface-emitting laser (VCSEL) that achieved a low lasing threshold of 17.3 μJ/cm2 and an impressive quality factor of 3850 under quasi-continuous nanosecond pumping. This performance marks the best reported to date for a perovskite laser in this regime.

The results point toward a practical route for making high-performance perovskite lasers that could work under true continuous-wave or electrically driven conditions—key milestones for their integration into future photonic chips and potentially flexible or wearable optoelectronic devices.

Source: optics.org

関連のおすすめ
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    翻訳を見る
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    翻訳を見る
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    翻訳を見る
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    翻訳を見る
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    翻訳を見る