日本語

More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

324
2023-11-01 14:59:21
翻訳を見る

μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.

It is understood that scientists at the Lawrence Livermore Laboratory (LLNL) Ignition Facility (NIF) in the United States have proposed a plan called "Science and Safety Intensive Compact μ The meson source "(ICMuS2) aims to quickly generate μ Mesons, using high-power lasers to accelerate capture μ The time required for meson images, thereby reducing the required exposure time.

This project is a huge challenge for particle physics detection. John Harton from the High Energy Physics Group in the Department of Physics at Colorado State University said. John Harton will lead the Colorado State University team responsible for developing collaborative projects μ The meson detector, he said:“ μ The number of meson particles far exceeds that of other particles, and we are using various tools to screen them.

μ The key step in sub generation is the wake left by the ultra intense short laser pulse accelerating the propagation of electrons in the plasma.
ICMuS2 plans to develop a portable, laser based μ The technical design of meson emitters has a flux greater than that of naturally occurring ones μ Mesons are several orders of magnitude larger and can be used for a wide range of imaging applications. This includes special nuclear material exploration, mining, and geophysics. Brendan Reagan, from NIF and the Advanced Photonics Technology Project in Photonics Science, stated that in addition to laser development, the project will also combine advanced numerical simulations of high-energy particle physics, plasma physics, high-performance computing systems, as well as system engineering and integration.

This work was carried out in collaboration with the extreme light infrastructure ERIC (ELI) of the Czech ELI beamline facility, Colorado State University, University of Maryland (UMD), Lockheed Martin, XUV Lasers, and Lawrence Berkeley National Laboratory (LBNL). LLNL also participated in another activity under the MuS2 project led by LBNL.

The preliminary experiment will be conducted using a plasma waveguide developed by UMD in an advanced laser at the Extreme Photonics High Repetitive Rated Watt Laser Facility at Colorado State University. High energy acceleration and μ The meson generation experiment will be conducted at ELI Beamlines using its L4-Aton 10-PW laser system.

The first phase of this four-year plan will focus on principle verification experiments and the impact of laser generated μ A clear demonstration of mesons. The second stage will attempt to demonstrate high energy μ Production and Transportability of Mesons μ Design of meson sources.

In addition, all aspects of the plan are based on the development of large-aperture Thulium laser technology under the guidance of the LLNL laboratory's research and development program, as well as the investment in laser driven accelerators by the High Energy Physics and Accelerator Research and Production Office of the US Department of Energy Science Office.

Source: Laser Manufacturing Network

関連のおすすめ
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    翻訳を見る
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    翻訳を見る
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    翻訳を見る
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    翻訳を見る
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    翻訳を見る