日本語

Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

669
2023-10-09 13:59:36
翻訳を見る

Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.

UV laser is generated by passing a standard wavelength laser (1064nm) through a nonlinear crystal and then reducing the wavelength size to (355nm) through third harmonic generation (THG) through another crystal.

As the demand for more complex products and diverse materials increases, Keinz has developed triaxial lasers to meet the demand for higher quality and more stable results. The company stated that lasers can achieve high contrast and uniform labeling on materials that were previously difficult to label. These operations can be performed at 330 × On an area of 330 millimeters, while reducing costs and simplifying the processing process.

This 3-axis UV laser marking machine can be used to generate high contrast markings on various materials, such as plastic, glass, and other thermosensitive materials. The marking head of the MD-U includes an embedded multifunctional camera that can automatically focus on a part, check the quality of the marking, and read the 2D code. By tracking unintentional deviations in target height or tilt, it is possible to prevent marking defects throughout the entire marking area.

Kearns also stated that its maximum operating speed in standard areas is 12000 mm/s, with built-in proprietary digital scanners and different quality adjustment levels, making the laser work faster than traditional models. At the same time, pattern selection software can customize and edit materials.

Kearns has developed the aforementioned laser using its proprietary sealing method, ensuring that its components have environmentally friendly performance and are not affected by factors such as dirt, dust, and water droplets.

In fact, three-axis laser technology has potential applications in various industries, including the automotive industry - it can help develop plastic parts, cationic painted parts, and smaller parts. In the electronics industry, it can help manufacture LED lights, wafers, and more. In addition, it will be able to assist the medical industry in developing tablets, bottles, and instruments, as well as manufacturing shells for some products in the food/cosmetics industry.

Source: OFweek

関連のおすすめ
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    翻訳を見る
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    翻訳を見る
  • POSTECH launches a new type of fiber optic fusion splicer FS-23 series

    FOSTEC announced on the 8th that a new type of fiber fusion splicer has been launched. The newly launched FS-23 series is a fusion splicer that can be used for fiber optic operations in long-distance optical networks and CCTV optical networks. It not only has a small size and light weight, but also has a sturdy design and a long-lasting battery, which can provide high-precision performance.A perso...

    2024-01-08
    翻訳を見る
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    翻訳を見る
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    翻訳を見る