日本語

China has successfully developed the world's first 193 nanometer compact solid-state laser

182
2025-03-24 15:25:47
翻訳を見る

The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power will increase by a hundred times - when lasers are portable like laptops, precision manufacturing will usher in a mode revolution.

Deep ultraviolet (DUV) lasers play a crucial role in semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology due to their high photon energy and short wavelength characteristics. Compared with excimer lasers or gas discharge lasers, this type of laser has higher coherence and lower power consumption, providing the possibility for the development of system miniaturization.

 



According to Advanced Photonics Nexus, the research team of the Chinese Academy of Sciences has made an important breakthrough and successfully developed a compact all solid state laser system that can generate 193 nm coherent light. This wavelength is crucial for photolithography processes, which form the manufacturing foundation of modern electronic devices by etching complex circuit patterns on silicon wafers.

The new laser system has a working repetition rate of 6 kHz and uses a self-developed ytterbium doped yttrium aluminum garnet (Yb: YAG) crystal amplifier to generate 1030 nanometer fundamental frequency light.

Experimental device
The laser output is divided into two paths: one path generates 258 nanometer ultraviolet light (output power of 1.2 watts) through fourth harmonic conversion, and the other path drives an optical parametric amplifier to generate 1553 nanometer laser (power of 700 milliwatts).

 


Subsequently, these two beams of light were mixed with cascaded LBO (lithium triborate, LiB3O5) crystals to obtain a 193 nanometer deep ultraviolet laser output with an average power of 70 milliwatts and a linewidth less than 880 megahertz.

The research team innovatively loaded a spiral phase plate onto a 1553 nanometer beam before mixing, successfully obtaining a vortex beam carrying orbital angular momentum. This marks the first time internationally that a solid-state laser has directly output a 193 nanometer vortex beam.

 



This breakthrough achievement not only provides a new seed light source for hybrid ArF excimer lasers, but also demonstrates important application prospects in fields such as wafer processing, defect detection, quantum communication, and optical micro control.
This innovative laser technology not only improves the efficiency and accuracy of semiconductor lithography, but also opens up new paths for advanced manufacturing technology.

The successful generation of the 193 nanometer vortex beam may trigger a revolutionary change in the field of electronic device manufacturing and promote breakthrough progress in related technologies.

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    翻訳を見る
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    翻訳を見る
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    翻訳を見る
  • The world's first scalable optical quantum computer prototype has been launched

    Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum c...

    02-12
    翻訳を見る
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    翻訳を見る