日本語

Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

536
2023-09-27 15:24:41
翻訳を見る

The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.

Moreover, the computational density of the demonstrated system is about two orders of magnitude higher than that of Nvidia, Google, or Graphcore systems.

Basically, this means that the most advanced models can be trained with 100 times less energy and occupy less space at the same speed.

Artificial neural networks mimic the way biological brains process information. These artificial intelligence systems aim to learn, combine, and summarize information from big datasets, reshaping the field of information processing. Current applications include images, objects, speech recognition, games, medicine, and physical chemistry.

The current artificial intelligence model has reached hundreds of billions of artificial neurons, showing exponential growth and posing challenges to current hardware capabilities.

This paper demonstrates that optical neural network (ONN) methods with high clock speed, parallelism, and low loss data transmission can overcome current limitations.

Our technology opens up a path for large-scale optoelectronic processors to accelerate machine learning tasks from data centers to decentralized edge devices, "the paper wrote.

The ONN method is expected to alleviate the bottlenecks of traditional processors, such as the number of transistors, data mobility energy consumption, and semiconductor size. ONN uses light, which can carry a large amount of information simultaneously due to its wide bandwidth and low data transmission loss. In addition, many photonic circuits can be integrated to expand the system.

In order to move light for calculation, the team led by MIT utilized many laser beams, which were described as "using mass-produced micrometer scale vertical cavity surface emitting lasers for neuron coding".

The researchers explained, "Our scheme is similar to the 'axon synapse dendrite' structure in biological neurons
They believe that the demonstrated system can be expanded through mature wafer level manufacturing processes and photon integration.

Dirk Englund, Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology and the head of this work, explained to SciTechDaily that the size of models such as ChatGPT is limited by the capabilities of today's supercomputers. Therefore, training larger models is not economically feasible.

He claimed, "Our new technology can make it possible to cross machine learning models, otherwise it would not be possible in the near future.

This paper titled "Deep Learning Using Coherent VCSEL Neural Networks" was published by a large team of scientists. This work has received support from the Army Research Office, NTT Research, and NTT Netcast Awards, as well as financial support from the Volkswagen Foundation. The three researchers of the team have applied for patents related to this technology.

Source: Laser Network

関連のおすすめ
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    翻訳を見る
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    翻訳を見る
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    翻訳を見る
  • DustPhotonic is the first to develop an 800G silicon photonic chip

    Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fib...

    2023-10-13
    翻訳を見る
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    翻訳を見る