日本語

Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

526
2024-03-23 10:21:42
翻訳を見る

Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.

The new non cooled pump laser module is designed specifically for high-power, high-performance optical amplifiers and amplification ROADM line card applications. The non cooled pumped laser module adopts a compact 10 pin external size, which is market first:
Up to 1000 mW output power, suitable for submarine applications.
Up to 2x700 mW, providing both symmetric and asymmetric options on dual chip platforms.

These non cooling modules support the growth trend of energy-saving networks to achieve sustainable development goals. This reduces network ownership costs by reducing overall power consumption and eliminating many thermal and power management devices associated with traditional cooling lasers.

"The company released its first non cooled pump laser module in 2004 and its first dual chip module in 2011, making it a leader in non cooled and dual chip technologies," said Dr. Beck Mason, Executive Vice President of Telecommunications. Our latest G10 pump chip supports the successful development of our high-power non cooled pump laser modules. Combining a wide range of active and passive component product combinations, Coherent provides a leading solution portfolio for submarine and ground amplifier designers.

The certification work for the new single chip and dual chip ground modules will be completed by mid-2024. The samples have been launched and will begin mass production by the end of 2024.

Source: Laser Net

関連のおすすめ
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    翻訳を見る
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    翻訳を見る
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    翻訳を見る
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    翻訳を見る
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    翻訳を見る