日本語

Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

227
2023-10-17 14:20:46
翻訳を見る

Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non generated Raman four wave mixing module".

The generation of supercontinuum spectrum is due to the coupling effect of dispersion and a large number of nonlinear effects, resulting in extremely wide spectral expansion. Due to its advantages such as wide bandwidth and high brightness, supercontinuum spectroscopy provides ultra wide light sources for many studies and has been applied in various fields such as microscopic living cell imaging, optical coherence tomography, and hyperspectral radar imaging. Supercontinuum spectra typically have widths of one to several octaves.

However, in practical applications, a very wide spectrum is not required. Considering that the spectrum of useless bands is a waste of energy, reduces efficiency, and leads to additional optical damage, it is necessary to achieve a wide and flat spectrum in specific bands. Customizing the shape of supercontinuum spectrum according to needs and limiting the spectrum to the band of interest has always been a controversial and difficult problem in supercontinuum spectrum research.

This study proposes a specific band flattened supercontinuum spectral method based on non degenerate Raman four wave mixing modulation. By controlling the dispersion of photonic crystal fibers and the peak power of the pump light, the gain of non degenerate Raman four-wave mixing is located in the required frequency bands for various application scenarios. This provides a new method for achieving supercontinuum spectra with broadband and high spectral intensity in the shortwave rectangular direction. Through this method, we developed a near-infrared flat supercontinuum spectrum with a spectral intensity of 3dB corresponding to a bandwidth of 420nm at the center wavelength of 800nm.

In addition, the relative intensity of anti Stokes light is 75.2%, and 49.6% of the total spectral energy is concentrated in the 610-1030 nm band, which provides a more effective light source for optical coherence tomography scanning. Using this supercontinuum spectrum as the light source for OCT can greatly improve axial resolution.

Figure 1 (a) Supercontinuum spectral spectra of pumps at different powers
(b) High efficiency ultra flat supercontinuum spectroscopy

Source: China Optical Journal Network

関連のおすすめ
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    翻訳を見る
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    翻訳を見る
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    翻訳を見る
  • TroGroup announces acquisition of Luxinar Ltd.

    Recently, TroGroup, a family owned laser giant operating globally in Austria, announced a major strategic move - the successful acquisition of Luxinar Ltd., a leading laser source manufacturer based in Hull, UK. This move marks a new level of TroGroup's technological leadership in the field of laser sources.Through this acquisition, Luxinar, with its approximately 200 elite team and over 25 years ...

    2024-08-03
    翻訳を見る
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    翻訳を見る